These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 22919393)

  • 1. Porous biodegradable metals for hard tissue scaffolds: a review.
    Yusop AH; Bakir AA; Shaharom NA; Abdul Kadir MR; Hermawan H
    Int J Biomater; 2012; 2012():641430. PubMed ID: 22919393
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Additively manufactured biodegradable porous iron.
    Li Y; Jahr H; Lietaert K; Pavanram P; Yilmaz A; Fockaert LI; Leeflang MA; Pouran B; Gonzalez-Garcia Y; Weinans H; Mol JMC; Zhou J; Zadpoor AA
    Acta Biomater; 2018 Sep; 77():380-393. PubMed ID: 29981948
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Additively manufactured biodegradable porous zinc.
    Li Y; Pavanram P; Zhou J; Lietaert K; Taheri P; Li W; San H; Leeflang MA; Mol JMC; Jahr H; Zadpoor AA
    Acta Biomater; 2020 Jan; 101():609-623. PubMed ID: 31672587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biodegradable Iron and Porous Iron: Mechanical Properties, Degradation Behaviour, Manufacturing Routes and Biomedical Applications.
    Salama M; Vaz MF; Colaço R; Santos C; Carmezim M
    J Funct Biomater; 2022 Jun; 13(2):. PubMed ID: 35735927
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Additively manufactured functionally graded biodegradable porous iron.
    Li Y; Jahr H; Pavanram P; Bobbert FSL; Paggi U; Zhang XY; Pouran B; Leeflang MA; Weinans H; Zhou J; Zadpoor AA
    Acta Biomater; 2019 Sep; 96():646-661. PubMed ID: 31302295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomimetic porous Mg with tunable mechanical properties and biodegradation rates for bone regeneration.
    Kang MH; Lee H; Jang TS; Seong YJ; Kim HE; Koh YH; Song J; Jung HD
    Acta Biomater; 2019 Jan; 84():453-467. PubMed ID: 30500444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A review: fabrication of porous polyurethane scaffolds.
    Janik H; Marzec M
    Mater Sci Eng C Mater Biol Appl; 2015 Mar; 48():586-91. PubMed ID: 25579961
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Additively manufactured biodegradable porous magnesium.
    Li Y; Zhou J; Pavanram P; Leeflang MA; Fockaert LI; Pouran B; Tümer N; Schröder KU; Mol JMC; Weinans H; Jahr H; Zadpoor AA
    Acta Biomater; 2018 Feb; 67():378-392. PubMed ID: 29242158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Additively manufactured biodegradable porous metals.
    Li Y; Jahr H; Zhou J; Zadpoor AA
    Acta Biomater; 2020 Oct; 115():29-50. PubMed ID: 32853809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancellous bone-like porous Fe@Zn scaffolds with core-shell-structured skeletons for biodegradable bone implants.
    He J; Fang J; Wei P; Li Y; Guo H; Mei Q; Ren F
    Acta Biomater; 2021 Feb; 121():665-681. PubMed ID: 33242640
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new approach based on injection moulding to produce biodegradable starch-based polymeric scaffolds: morphology, mechanical and degradation behaviour.
    Gomes ME; Ribeiro AS; Malafaya PB; Reis RL; Cunha AM
    Biomaterials; 2001 May; 22(9):883-9. PubMed ID: 11311006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological evaluation and finite-element modeling of porous poly(para-phenylene) for orthopaedic implants.
    Ahn H; Patel RR; Hoyt AJ; Lin ASP; Torstrick FB; Guldberg RE; Frick CP; Carpenter RD; Yakacki CM; Willett NJ
    Acta Biomater; 2018 May; 72():352-361. PubMed ID: 29563069
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Porous Scaffolds for Regeneration of Cartilage, Bone and Osteochondral Tissue.
    Chen G; Kawazoe N
    Adv Exp Med Biol; 2018; 1058():171-191. PubMed ID: 29691822
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Advances in Biodegradable 3D Printed Scaffolds with Carbon-Based Nanomaterials for Bone Regeneration.
    Armentia SL; Real JCD; Paz E; Dunne N
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33187218
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrophilization of synthetic biodegradable polymer scaffolds for improved cell/tissue compatibility.
    Oh SH; Lee JH
    Biomed Mater; 2013 Feb; 8(1):014101. PubMed ID: 23472257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Solvent-cast 3D printing of magnesium scaffolds.
    Dong J; Li Y; Lin P; Leeflang MA; van Asperen S; Yu K; Tümer N; Norder B; Zadpoor AA; Zhou J
    Acta Biomater; 2020 Sep; 114():497-514. PubMed ID: 32771594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fabrication methods of porous metals for use in orthopaedic applications.
    Ryan G; Pandit A; Apatsidis DP
    Biomaterials; 2006 May; 27(13):2651-70. PubMed ID: 16423390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biodegradable and biomimetic elastomeric scaffolds for tissue-engineered heart valves.
    Xue Y; Sant V; Phillippi J; Sant S
    Acta Biomater; 2017 Jan; 48():2-19. PubMed ID: 27780764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly porous titanium scaffolds for orthopaedic applications.
    Dabrowski B; Swieszkowski W; Godlinski D; Kurzydlowski KJ
    J Biomed Mater Res B Appl Biomater; 2010 Oct; 95(1):53-61. PubMed ID: 20690174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microtubular architecture of biodegradable polymer scaffolds.
    Ma PX; Zhang R
    J Biomed Mater Res; 2001 Sep; 56(4):469-77. PubMed ID: 11400124
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.