These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 229199)

  • 1. Catalysis of the disproportionation of superoxide by metalloporphyrins.
    Pasternack RF; Skowronek WR
    J Inorg Biochem; 1979 Nov; 11(3):261-7. PubMed ID: 229199
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Catalysis of the disproportionation of superoxide by metalloporphyrins. III.
    Pasternack RF; Banth A; Pasternack JM; Johnson CS
    J Inorg Biochem; 1981 Nov; 15(3):261-7. PubMed ID: 6273505
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical properties of water-soluble porphyrins 3. The reaction of superoxide radicals with some metalloporphyrins.
    Peretz P; Solomon D; Weinraub D; Faraggi M
    Int J Radiat Biol Relat Stud Phys Chem Med; 1982 Oct; 42(4):449-56. PubMed ID: 6293987
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure effect of water-soluble iron porphyrins on catalyzing protein tyrosine nitration in the presence of nitrite and hydrogen peroxide.
    Li J; Yang Z; Li H; Gao Z
    Nitric Oxide; 2019 Oct; 91():42-51. PubMed ID: 31351146
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of iron chelates in hydroxyl radical production by rat liver microsomes, NADPH-cytochrome P-450 reductase and xanthine oxidase.
    Winston GW; Feierman DE; Cederbaum AI
    Arch Biochem Biophys; 1984 Jul; 232(1):378-90. PubMed ID: 6331321
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Oxidation of ascorbic acid with superoxide anion generated by the xanthine-xanthine oxidase system.
    Nishikimi M
    Biochem Biophys Res Commun; 1975 Mar; 63(2):463-8. PubMed ID: 235924
    [No Abstract]   [Full Text] [Related]  

  • 7. Chemical properties of water-soluble porphyrins. 5. Reactions of some manganese (III) porphyrins with the superoxide and other reducing radicals.
    Weinraub D; Levy P; Faraggi M
    Int J Radiat Biol Relat Stud Phys Chem Med; 1986 Oct; 50(4):649-58. PubMed ID: 3019912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The role of superoxide in xanthine oxidase-induced autooxidation of linoleic acid.
    Thomas MJ; Mehl KS; Pryor WA
    J Biol Chem; 1982 Jul; 257(14):8343-7. PubMed ID: 6282880
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cell death by reactive oxygen species generated from water-soluble cationic metalloporphyrins as superoxide dismutase mimics.
    Ohse T; Nagaoka S; Arakawa Y; Kawakami H; Nakamura K
    J Inorg Biochem; 2001 Jun; 85(2-3):201-8. PubMed ID: 11410240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neuroprotective efficacy and therapeutic time window of peroxynitrite decomposition catalysts in focal cerebral ischemia in rats.
    Thiyagarajan M; Kaul CL; Sharma SS
    Br J Pharmacol; 2004 Jul; 142(5):899-911. PubMed ID: 15197101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Permeation of liposome membrane by superoxide radical.
    Rumyantseva GV; Weiner LM; Molin YN; Budker VG
    FEBS Lett; 1979 Dec; 108(2):477-80. PubMed ID: 42561
    [No Abstract]   [Full Text] [Related]  

  • 12. Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex.
    McCord JM; Day ED
    FEBS Lett; 1978 Feb; 86(1):139-42. PubMed ID: 202505
    [No Abstract]   [Full Text] [Related]  

  • 13. Superoxide dismutase mimics based on iron in vivo.
    Nagano T; Hirano T; Hirobe M
    J Biol Chem; 1989 Jun; 264(16):9243-9. PubMed ID: 2542303
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Xanthine oxidase- and iron-dependent lipid peroxidation.
    Miller DM; Grover TA; Nayini N; Aust SD
    Arch Biochem Biophys; 1993 Feb; 301(1):1-7. PubMed ID: 8382902
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of Oxidative Stress in Renal Ischemia-Reperfusion Injury.
    Choi EK; Jung H; Kwak KH; Yi SJ; Lim JA; Park SH; Park JM; Kim S; Jee DL; Lim DG
    Anesth Analg; 2017 Jan; 124(1):204-213. PubMed ID: 27607480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Stimulation of Akt Phosphorylation and Glucose Transport by Metalloporphyrins with Peroxynitrite Decomposition Catalytic Activity.
    Eccardt AM; Pelzel RJ; Bell TP; Fisher JS
    Catalysts; 2022 Aug; 12(8):. PubMed ID: 37123089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Copper(II)ethylenediaminetetraacetate does disproportionate superoxide.
    Willingham WM; Sorenson JR
    Biochem Biophys Res Commun; 1988 Jan; 150(1):252-8. PubMed ID: 2827669
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The reaction of superoxide with reduced glutathione.
    Winterbourn CC; Metodiewa D
    Arch Biochem Biophys; 1994 Nov; 314(2):284-90. PubMed ID: 7979367
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The interactions of superoxide ion(O2-.) with metallo-porphyrins [(C1(8)TPP)M, M = Fe,Mn,Co Zn]; models for biological systems and superoxide dismutases.
    Sawyer DT; Tsang PK
    Free Radic Res Commun; 1991; 12-13 Pt 1():75-86. PubMed ID: 1649106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photoreaction generating active oxygens of In(3+)-tetrakis(4-methylpyridyl)-porphine in the presence of albumins.
    Mifune M; Asahara H; Hinokiyama T; Liu J; Akizawa H; Iwado A; Motohashi N; Saito Y
    Chem Pharm Bull (Tokyo); 2002 Dec; 50(12):1638-40. PubMed ID: 12499609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.