These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

305 related articles for article (PubMed ID: 22919909)

  • 1. Precipitation-driven carbon balance controls survivorship of desert biocrust mosses.
    Coe KK; Belnap J; Sparks JP
    Ecology; 2012 Jul; 93(7):1626-36. PubMed ID: 22919909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Response of desert biological soil crusts to alterations in precipitation frequency.
    Belnap J; Phillips SL; Miller ME
    Oecologia; 2004 Oct; 141(2):306-16. PubMed ID: 14689292
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Spectrally monitoring the response of the biocrust moss Syntrichia caninervis to altered precipitation regimes.
    Young KE; Reed SC
    Sci Rep; 2017 Feb; 7():41793. PubMed ID: 28165505
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biocrusts enhance soil organic carbon stability and regulate the fate of new-input carbon in semiarid desert ecosystems.
    Dou W; Xiao B; Revillini D; Delgado-Baquerizo M
    Sci Total Environ; 2024 Mar; 918():170794. PubMed ID: 38336052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiology-based prognostic modeling of the influence of changes in precipitation on a keystone dryland plant species.
    Coe KK; Sparks JP
    Oecologia; 2014 Dec; 176(4):933-42. PubMed ID: 25193314
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Climate change and physical disturbance cause similar community shifts in biological soil crusts.
    Ferrenberg S; Reed SC; Belnap J
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12116-21. PubMed ID: 26371310
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large Blooms of
    Karaoz U; Couradeau E; da Rocha UN; Lim HC; Northen T; Garcia-Pichel F; Brodie EL
    mBio; 2018 Mar; 9(2):. PubMed ID: 29511079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptation to Environmental Extremes Structures Functional Traits in Biological Soil Crust and Hypolithic Microbial Communities.
    Mackelprang R; Vaishampayan P; Fisher K
    mSystems; 2022 Aug; 7(4):e0141921. PubMed ID: 35852333
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rapidly restoring biological soil crusts and ecosystem functions in a severely disturbed desert ecosystem.
    Chiquoine LP; Abella SR; Bowker MA
    Ecol Appl; 2016 Jun; 26(4):1260-72. PubMed ID: 27509763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biocrust-forming mosses mitigate the negative impacts of increasing aridity on ecosystem multifunctionality in drylands.
    Delgado-Baquerizo M; Maestre FT; Eldridge DJ; Bowker MA; Ochoa V; Gozalo B; Berdugo M; Val J; Singh BK
    New Phytol; 2016 Mar; 209(4):1540-52. PubMed ID: 26452175
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Physiological ecology of desert biocrust moss following 10 years exposure to elevated CO₂: evidence for enhanced photosynthetic thermotolerance.
    Coe KK; Belnap J; Grote EE; Sparks JP
    Physiol Plant; 2012 Apr; 144(4):346-56. PubMed ID: 22385156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Productivity responses of desert vegetation to precipitation patterns across a rainfall gradient.
    Li F; Zhao W; Liu H
    J Plant Res; 2015 Mar; 128(2):283-94. PubMed ID: 25613044
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ecohydrological effects of biocrust type on restoration dynamics in drylands.
    Chen N; Liu X; Zheng K; Zhang C; Liu Y; Lu K; Jia R; Zhao C
    Sci Total Environ; 2019 Oct; 687():527-534. PubMed ID: 31212160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in biocrust cover drive carbon cycle responses to climate change in drylands.
    Maestre FT; Escolar C; de Guevara ML; Quero JL; Lázaro R; Delgado-Baquerizo M; Ochoa V; Berdugo M; Gozalo B; Gallardo A
    Glob Chang Biol; 2013 Dec; 19(12):3835-47. PubMed ID: 23818331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biocrust carbon exchange varies with crust type and time on Chihuahuan Desert gypsum soils.
    Hoellrich MR; James DK; Bustos D; Darrouzet-Nardi A; Santiago LS; Pietrasiak N
    Front Microbiol; 2023; 14():1128631. PubMed ID: 37234525
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ecology and responses to climate change of biocrust-forming mosses in drylands.
    Ladrón de Guevara M; Maestre FT
    J Exp Bot; 2022 Jul; 73(13):4380-4395. PubMed ID: 35553672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Response of biocrust-soil system respiration to winter low temperature and simulated warming].
    Guan C; Zhang P; Chen YL; Song G; Zhou YY; Li XR
    Ying Yong Sheng Tai Xue Bao; 2016 Oct; 27(10):3213-3220. PubMed ID: 29726147
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergence of Biocrust Active Bacterial Communities in the Negev Desert During a Hydration-Desiccation Cycle.
    Baubin C; Ran N; Siebner H; Gillor O
    Microb Ecol; 2023 Jul; 86(1):474-484. PubMed ID: 35788422
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Soil microbial community response to drought and precipitation variability in the Chihuahuan Desert.
    Clark JS; Campbell JH; Grizzle H; Acosta-Martìnez V; Zak JC
    Microb Ecol; 2009 Feb; 57(2):248-60. PubMed ID: 19067031
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life under quartz: Hypolithic mosses in the Mojave Desert.
    Ekwealor JTB; Fisher KM
    PLoS One; 2020; 15(7):e0235928. PubMed ID: 32697785
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.