These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 22920217)

  • 1. One-pot in situ fabrication of stable nanocaterpillars directly from polyacetylene diblock copolymers synthesized by mild ring-opening metathesis polymerization.
    Yoon KY; Lee IH; Kim KO; Jang J; Lee E; Choi TL
    J Am Chem Soc; 2012 Sep; 134(35):14291-4. PubMed ID: 22920217
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-pot preparation of 3D nano- and microaggregates via in situ nanoparticlization of polyacetylene diblock copolymers produced by ROMP.
    Yoon KY; Shin S; Kim YJ; Kim I; Lee E; Choi TL
    Macromol Rapid Commun; 2015 Jun; 36(11):1069-74. PubMed ID: 25639812
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cyclopolymerization To Synthesize Conjugated Polymers Containing Meldrum's Acid as a Precursor for Ketene Functionality.
    Kim J; Kang EH; Choi TL
    ACS Macro Lett; 2012 Aug; 1(8):1090-1093. PubMed ID: 35607044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct synthesis of soluble, end-functionalized polyenes and polyacetylene block copolymers.
    Scherman OA; Rutenberg IM; Grubbs RH
    J Am Chem Soc; 2003 Jul; 125(28):8515-22. PubMed ID: 12848557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cobaltocenium-containing block copolymers: ring-opening metathesis polymerization, self-assembly and precursors for template synthesis of inorganic nanoparticles.
    Ren L; Zhang J; Hardy CG; Ma S; Tang C
    Macromol Rapid Commun; 2012 Apr; 33(6-7):510-6. PubMed ID: 22252886
    [TBL] [Abstract][Full Text] [Related]  

  • 6. One-pot synthesis of nanocaterpillar structures via in situ nanoparticlization of fully conjugated poly(p-phenylene)-block-polythiophene.
    Lee IH; Amaladass P; Choi TL
    Chem Commun (Camb); 2014 Jul; 50(59):7945-8. PubMed ID: 24923237
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface-initiated, ring-opening metathesis polymerization: formation of diblock copolymer brushes and solvent-dependent morphological changes.
    Kong B; Lee JK; Choi IS
    Langmuir; 2007 Jun; 23(12):6761-5. PubMed ID: 17489620
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthesis of amphiphilic tadpole-shaped linear-cyclic diblock copolymers via ring-opening polymerization directly initiating from cyclic precursors and their application as drug nanocarriers.
    Wan X; Liu T; Liu S
    Biomacromolecules; 2011 Apr; 12(4):1146-54. PubMed ID: 21332208
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of supramolecular semiconductor block copolymers by ring-opening metathesis polymerization.
    Elacqua E; Weck M
    Chemistry; 2015 May; 21(19):7151-8. PubMed ID: 25808543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast tandem ring-opening/ring-closing metathesis polymerization from a monomer containing cyclohexene and terminal alkyne.
    Park H; Choi TL
    J Am Chem Soc; 2012 May; 134(17):7270-3. PubMed ID: 22512615
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis of all-conjugated diblock copolymers by quasi-living polymerization and observation of their microphase separation.
    Zhang Y; Tajima K; Hirota K; Hashimoto K
    J Am Chem Soc; 2008 Jun; 130(25):7812-3. PubMed ID: 18507378
    [TBL] [Abstract][Full Text] [Related]  

  • 12. ROMPI-CDSA: ring-opening metathesis polymerization-induced crystallization-driven self-assembly of metallo-block copolymers.
    Sha Y; Rahman MA; Zhu T; Cha Y; McAlister CW; Tang C
    Chem Sci; 2019 Nov; 10(42):9782-9787. PubMed ID: 32055347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aqueous-Phase Ring-Opening Metathesis Polymerization-Induced Self-Assembly.
    Wright DB; Touve MA; Thompson MP; Gianneschi NC
    ACS Macro Lett; 2018 Apr; 7(4):401-405. PubMed ID: 35619352
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A one-pot synthesis of polysulfane-bearing block copolymer nanoparticles with tunable size and refractive index.
    Lim J; Cho Y; Kang EH; Yang S; Pyun J; Choi TL; Char K
    Chem Commun (Camb); 2016 Feb; 52(12):2485-8. PubMed ID: 26649937
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient synthesis of narrowly dispersed brush copolymers and study of their assemblies: the importance of side chain arrangement.
    Xia Y; Olsen BD; Kornfield JA; Grubbs RH
    J Am Chem Soc; 2009 Dec; 131(51):18525-32. PubMed ID: 19947607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of hybrid block copolymers via integrated ring-opening metathesis polymerization and polymerization of NCA.
    Bai Y; Lu H; Ponnusamy E; Cheng J
    Chem Commun (Camb); 2011 Oct; 47(38):10830-2. PubMed ID: 21869956
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phenylenevinylene Block Copolymers via Ring-Opening Metathesis Polymerization.
    Yu CY; Kingsley JW; Lidzey DG; Turner ML
    Macromol Rapid Commun; 2009 Nov; 30(22):1889-92. PubMed ID: 21638470
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystalline-crystalline block copolymers of regioregular poly(3-hexylthiophene) and polyethylene by ring-opening metathesis polymerization.
    Radano CP; Scherman OA; Stingelin-Stutzmann N; Müller C; Breiby DW; Smith P; Janssen RA; Meijer EW
    J Am Chem Soc; 2005 Sep; 127(36):12502-3. PubMed ID: 16144393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A donor-acceptor conjugated block copolymer of poly(arylenevinylene)s by ring-opening metathesis polymerization.
    Chang SW; Horie M
    Chem Commun (Camb); 2015 Jun; 51(44):9113-6. PubMed ID: 25940683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparing Semiconducting Nanoribbons with Tunable Length and Width via Crystallization-Driven Self-Assembly of a Simple Conjugated Homopolymer.
    Choi I; Yang S; Choi TL
    J Am Chem Soc; 2018 Dec; 140(49):17218-17225. PubMed ID: 30500176
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.