These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 22920259)

  • 21. Modulation of AMPA currents by D2 dopamine receptors in striatal medium-sized spiny neurons: are dendrites necessary?
    Hernández-Echeagaray E; Starling AJ; Cepeda C; Levine MS
    Eur J Neurosci; 2004 May; 19(9):2455-63. PubMed ID: 15128399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Dopamine depresses melanin concentrating hormone neuronal activity through multiple effects on α2-noradrenergic, D1 and D2-like dopaminergic receptors.
    Conductier G; Nahon JL; Guyon A
    Neuroscience; 2011 Mar; 178():89-100. PubMed ID: 21262322
    [TBL] [Abstract][Full Text] [Related]  

  • 23. BDNF-induced facilitation of afferent-evoked responses in lamina II neurons is reduced after neonatal spinal cord contusion injury.
    Garraway SM; Anderson AJ; Mendell LM
    J Neurophysiol; 2005 Sep; 94(3):1798-804. PubMed ID: 15901762
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synaptic plasticity in rat subthalamic nucleus induced by high-frequency stimulation.
    Shen KZ; Zhu ZT; Munhall A; Johnson SW
    Synapse; 2003 Dec; 50(4):314-9. PubMed ID: 14556236
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of N-methyl-D-aspartate glutamate receptor antagonists on oscillatory signal propagation in the guinea-pig accessory olfactory bulb slice: characterization by optical, field potential and patch clamp recordings.
    Sugai T; Onoda N
    Neuroscience; 2005; 135(2):583-94. PubMed ID: 16112479
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Altered corticostriatal neurotransmission and modulation in dopamine transporter knock-down mice.
    Wu N; Cepeda C; Zhuang X; Levine MS
    J Neurophysiol; 2007 Jul; 98(1):423-32. PubMed ID: 17522168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Apomorphine-evoked redistribution of neurokinin-3 receptors in dopaminergic dendrites and neuronal nuclei of the rat ventral tegmental area.
    Misono K; Lessard A
    Neuroscience; 2012 Feb; 203():27-38. PubMed ID: 22200547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phasic activation of ventral tegmental neurons increases response and pattern similarity in prefrontal cortex neurons.
    Iwashita M
    Elife; 2014 Sep; 3():. PubMed ID: 25269147
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chronic stress attenuates GABAergic inhibition and alters gene expression of parvocellular neurons in rat hypothalamus.
    Verkuyl JM; Hemby SE; Joëls M
    Eur J Neurosci; 2004 Sep; 20(6):1665-73. PubMed ID: 15355334
    [TBL] [Abstract][Full Text] [Related]  

  • 30. GABAergic pathways in the rat subcortical visual system: a comparative study in vivo and in vitro.
    Born G; Schmidt M
    Eur J Neurosci; 2007 Sep; 26(5):1183-92. PubMed ID: 17767497
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Short-term desensitization of fast escape behavior associated with suppression of Mauthner cell activity in larval zebrafish.
    Takahashi M; Inoue M; Tanimoto M; Kohashi T; Oda Y
    Neurosci Res; 2017 Aug; 121():29-36. PubMed ID: 28343884
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Demonstration of a neural circuit critical for imprinting behavior in chicks.
    Nakamori T; Sato K; Atoji Y; Kanamatsu T; Tanaka K; Ohki-Hamazaki H
    J Neurosci; 2010 Mar; 30(12):4467-80. PubMed ID: 20335483
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Ambient light regulates sodium channel activity to dynamically control retinal signaling.
    Ichinose T; Lukasiewicz PD
    J Neurosci; 2007 Apr; 27(17):4756-64. PubMed ID: 17460088
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Behavioral Role of the Reciprocal Inhibition between a Pair of Mauthner Cells during Fast Escapes in Zebrafish.
    Shimazaki T; Tanimoto M; Oda Y; Higashijima SI
    J Neurosci; 2019 Feb; 39(7):1182-1194. PubMed ID: 30578342
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evidence for a widespread brain stem escape network in larval zebrafish.
    Gahtan E; Sankrithi N; Campos JB; O'Malley DM
    J Neurophysiol; 2002 Jan; 87(1):608-14. PubMed ID: 11784774
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Olfactoretinal centrifugal input modulates zebrafish retinal ganglion cell activity: a possible role for dopamine-mediated Ca2+ signalling pathways.
    Huang L; Maaswinkel H; Li L
    J Physiol; 2005 Dec; 569(Pt 3):939-48. PubMed ID: 16239263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional role of a specialized class of spinal commissural inhibitory neurons during fast escapes in zebrafish.
    Satou C; Kimura Y; Kohashi T; Horikawa K; Takeda H; Oda Y; Higashijima S
    J Neurosci; 2009 May; 29(21):6780-93. PubMed ID: 19474306
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The Descending Diencephalic Dopamine System Is Tuned to Sensory Stimuli.
    Reinig S; Driever W; Arrenberg AB
    Curr Biol; 2017 Feb; 27(3):318-333. PubMed ID: 28089511
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Distal connectivity causes summation and division across mouse visual cortex.
    Sato TK; Häusser M; Carandini M
    Nat Neurosci; 2014 Jan; 17(1):30-2. PubMed ID: 24241394
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Differential processing in modality-specific Mauthner cell dendrites.
    Medan V; Mäki-Marttunen T; Sztarker J; Preuss T
    J Physiol; 2018 Feb; 596(4):667-689. PubMed ID: 29148564
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.