BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 22920454)

  • 21. Effectiveness of automated locomotor training in patients with chronic incomplete spinal cord injury: a multicenter trial.
    Wirz M; Zemon DH; Rupp R; Scheel A; Colombo G; Dietz V; Hornby TG
    Arch Phys Med Rehabil; 2005 Apr; 86(4):672-80. PubMed ID: 15827916
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Robotic resistance treadmill training improves locomotor function in human spinal cord injury: a pilot study.
    Wu M; Landry JM; Schmit BD; Hornby TG; Yen SC
    Arch Phys Med Rehabil; 2012 May; 93(5):782-9. PubMed ID: 22459697
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Unexpected recovery after robotic locomotor training at physiologic stepping speed: a single-case design.
    Spiess MR; Jaramillo JP; Behrman AL; Teraoka JK; Patten C
    Arch Phys Med Rehabil; 2012 Aug; 93(8):1476-84. PubMed ID: 22446153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of Overground Locomotor Training on Walking Performance in Chronic Cervical Motor Incomplete Spinal Cord Injury: A Pilot Study.
    Gollie JM; Guccione AA; Panza GS; Jo PY; Herrick JE
    Arch Phys Med Rehabil; 2017 Jun; 98(6):1119-1125. PubMed ID: 27965006
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Gait analysis following treadmill training with body weight support versus conventional physical therapy: a prospective randomized controlled single blind study.
    Lucareli PR; Lima MO; Lima FP; de Almeida JG; Brech GC; D'Andréa Greve JM
    Spinal Cord; 2011 Sep; 49(9):1001-7. PubMed ID: 21537338
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Locomotor training: as a treatment of spinal cord injury and in the progression of neurologic rehabilitation.
    Harkema SJ; Hillyer J; Schmidt-Read M; Ardolino E; Sisto SA; Behrman AL
    Arch Phys Med Rehabil; 2012 Sep; 93(9):1588-97. PubMed ID: 22920456
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Locomotor training progression and outcomes after incomplete spinal cord injury.
    Behrman AL; Lawless-Dixon AR; Davis SB; Bowden MG; Nair P; Phadke C; Hannold EM; Plummer P; Harkema SJ
    Phys Ther; 2005 Dec; 85(12):1356-71. PubMed ID: 16305274
    [TBL] [Abstract][Full Text] [Related]  

  • 28. An outpatient low-intensity locomotor training programme for paediatric chronic incomplete spinal cord injury.
    O'Donnell CM; Harvey AR
    Spinal Cord; 2013 Aug; 51(8):650-1. PubMed ID: 23567757
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Body weight supported gait training: from laboratory to clinical setting.
    Dietz V
    Brain Res Bull; 2009 Jan; 78(1):I-VI. PubMed ID: 19070780
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Spinal decompression sickness presenting as partial Brown-Sequard syndrome and treated with robotic-assisted body-weight support treadmill training.
    Moreh E; Meiner Z; Neeb M; Hiller N; Schwartz I
    J Rehabil Med; 2009 Jan; 41(1):88-9. PubMed ID: 19197576
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of forward versus backward walking using body weight supported treadmill training in an individual with a spinal cord injury: a single subject design.
    Moriello G; Pathare N; Cirone C; Pastore D; Shears D; Sulehri S
    Physiother Theory Pract; 2014 Jan; 30(1):29-37. PubMed ID: 23848575
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficacy of partial body weight-supported treadmill training compared with overground walking practice for children with cerebral palsy: a randomized controlled trial.
    Willoughby KL; Dodd KJ; Shields N; Foley S
    Arch Phys Med Rehabil; 2010 Mar; 91(3):333-9. PubMed ID: 20298820
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robot-aided gait training in an individual with chronic spinal cord injury: a case study.
    Bishop L; Stein J; Wong CK
    J Neurol Phys Ther; 2012 Sep; 36(3):138-43. PubMed ID: 22854804
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of soleus H-reflex modulation after incomplete spinal cord injury in 2 walking environments: treadmill with body weight support and overground.
    Phadke CP; Wu SS; Thompson FJ; Behrman AL
    Arch Phys Med Rehabil; 2007 Dec; 88(12):1606-13. PubMed ID: 18047875
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Body weight supported treadmill training at very low treatment frequency for a young adult with incomplete cervical spinal cord injury.
    Young DL; Wallmann HW; Poole I; Threlkeld AJ
    NeuroRehabilitation; 2009; 25(4):261-70. PubMed ID: 20037219
    [TBL] [Abstract][Full Text] [Related]  

  • 36. [A robotic system for gait re-education in patients with an incomplete spinal cord injury].
    Esclarín-De Ruz A; Alcobendas-Maestro M; Casado-López R; Muñoz-Gonzalez A; Florido-Sánchez MA; González-Valdizán E
    Rev Neurol; 2009 Dec 16-31; 49(12):617-22. PubMed ID: 20013712
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Robotic-assisted, body-weight-supported treadmill training in individuals following motor incomplete spinal cord injury.
    Hornby TG; Zemon DH; Campbell D
    Phys Ther; 2005 Jan; 85(1):52-66. PubMed ID: 15623362
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An electric stimulation cycling protocol for gait in incomplete spinal cord injury.
    Page SJ; Levine P; Strayer J
    Arch Phys Med Rehabil; 2007 Jun; 88(6):798-800. PubMed ID: 17532906
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Body weight supported gait training: from laboratory to clinical setting.
    Dietz V
    Brain Res Bull; 2008 Jul; 76(5):459-63. PubMed ID: 18534251
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recovery of locomotor function after treadmill training of incomplete spinal cord injured rats.
    Thota A; Carlson S; Jung R
    Biomed Sci Instrum; 2001; 37():63-7. PubMed ID: 11347446
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.