These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

661 related articles for article (PubMed ID: 22920565)

  • 41. Effects of dyes, gold nanocrystals, pH, and metal ions on plasmonic and molecular resonance coupling.
    Ni W; Chen H; Su J; Sun Z; Wang J; Wu H
    J Am Chem Soc; 2010 Apr; 132(13):4806-14. PubMed ID: 20225866
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Effect of particle properties and light polarization on the plasmonic resonances in metallic nanoparticles.
    Guler U; Turan R
    Opt Express; 2010 Aug; 18(16):17322-38. PubMed ID: 20721120
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Longitudinal and transverse coupling in infrared gold nanoantenna arrays: long range versus short range interaction regimes.
    Weber D; Albella P; Alonso-González P; Neubrech F; Gui H; Nagao T; Hillenbrand R; Aizpurua J; Pucci A
    Opt Express; 2011 Aug; 19(16):15047-61. PubMed ID: 21934866
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wideband perfect light absorber at midwave infrared using multiplexed metal structures.
    Hendrickson J; Guo J; Zhang B; Buchwald W; Soref R
    Opt Lett; 2012 Feb; 37(3):371-3. PubMed ID: 22297356
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Differentiating surface and bulk interactions using localized surface plasmon resonances of gold nanorods.
    Nehru N; Donev EU; Huda GM; Yu L; Wei Y; Hastings JT
    Opt Express; 2012 Mar; 20(7):6905-14. PubMed ID: 22453368
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Surface-enhanced ATR-IR spectroscopy with interface-grown plasmonic gold-island films near the percolation threshold.
    Enders D; Nagao T; Pucci A; Nakayama T; Aono M
    Phys Chem Chem Phys; 2011 Mar; 13(11):4935-41. PubMed ID: 21293799
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Surface-enhanced infrared absorption using individual cross antennas tailored to chemical moieties.
    Brown LV; Zhao K; King N; Sobhani H; Nordlander P; Halas NJ
    J Am Chem Soc; 2013 Mar; 135(9):3688-95. PubMed ID: 23402592
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Gold nanostars as thermoplasmonic nanoparticles for optical heating.
    Rodríguez-Oliveros R; Sánchez-Gil JA
    Opt Express; 2012 Jan; 20(1):621-6. PubMed ID: 22274385
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Dual-wavelength band spectroscopic optical frequency domain imaging using plasmon-resonant scattering in metallic nanoparticles.
    Kim TS; Jang SJ; Oh N; Kim Y; Park T; Park J; Oh WY
    Opt Lett; 2014 May; 39(10):3082-5. PubMed ID: 24978279
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tailoring plasmonic substrates for surface enhanced spectroscopies.
    Lal S; Grady NK; Kundu J; Levin CS; Lassiter JB; Halas NJ
    Chem Soc Rev; 2008 May; 37(5):898-911. PubMed ID: 18443675
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gold nanoframes: very high surface plasmon fields and excellent near-infrared sensors.
    Mahmoud MA; El-Sayed MA
    J Am Chem Soc; 2010 Sep; 132(36):12704-10. PubMed ID: 20722373
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Resonance modes, cavity field enhancements, and long-range collective photonic effects in periodic bowtie nanostructures.
    Hsueh CH; Lin CH; Li JH; Hatab NA; Gu B
    Opt Express; 2011 Sep; 19(20):19660-7. PubMed ID: 21996907
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Surface assembly and plasmonic properties in strongly coupled segmented gold nanorods.
    Gupta MK; König T; Near R; Nepal D; Drummy LF; Biswas S; Naik S; Vaia RA; El-Sayed MA; Tsukruk VV
    Small; 2013 Sep; 9(17):2979-90. PubMed ID: 23495078
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Surface plasmon-coupled emission on plasmonic Bragg gratings.
    Toma M; Toma K; Adam P; Homola J; Knoll W; Dostálek J
    Opt Express; 2012 Jun; 20(13):14042-53. PubMed ID: 22714469
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Raman enhancement on a broadband meta-surface.
    Ayas S; Güner H; Türker B; Ekiz OÖ; Dirisaglik F; Okyay AK; Dâna A
    ACS Nano; 2012 Aug; 6(8):6852-61. PubMed ID: 22845672
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Substrate-based platform for boosting the surface-enhanced Raman of plasmonic nanoparticles.
    Min Q; Pang Y; Collins DJ; Kuklev NA; Gottselig K; Steuerman DW; Gordon R
    Opt Express; 2011 Jan; 19(2):1648-55. PubMed ID: 21263704
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Ultrathin and broadband high impedance surface absorbers based on metamaterial substrates.
    Pang Y; Cheng H; Zhou Y; Li Z; Wang J
    Opt Express; 2012 May; 20(11):12515-20. PubMed ID: 22714239
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Integrated fiber-coupled launcher for slow plasmon-polariton waves.
    Della Valle G; Longhi S
    Opt Express; 2012 Jan; 20(3):3158-65. PubMed ID: 22330553
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Gold nanostructures: engineering their plasmonic properties for biomedical applications.
    Hu M; Chen J; Li ZY; Au L; Hartland GV; Li X; Marquez M; Xia Y
    Chem Soc Rev; 2006 Nov; 35(11):1084-94. PubMed ID: 17057837
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.