These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 22921067)

  • 1. Picoliter cell lysate assays in microfluidic droplet compartments for directed enzyme evolution.
    Kintses B; Hein C; Mohamed MF; Fischlechner M; Courtois F; Lainé C; Hollfelder F
    Chem Biol; 2012 Aug; 19(8):1001-9. PubMed ID: 22921067
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CotA laccase: high-throughput manipulation and analysis of recombinant enzyme libraries expressed in E. coli using droplet-based microfluidics.
    Beneyton T; Coldren F; Baret JC; Griffiths AD; Taly V
    Analyst; 2014 Jul; 139(13):3314-23. PubMed ID: 24733162
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microfluidic droplets: new integrated workflows for biological experiments.
    Kintses B; van Vliet LD; Devenish SR; Hollfelder F
    Curr Opin Chem Biol; 2010 Oct; 14(5):548-55. PubMed ID: 20869904
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrahigh-Throughput Screening of Single-Cell Lysates for Directed Evolution and Functional Metagenomics.
    Gielen F; Colin PY; Mair P; Hollfelder F
    Methods Mol Biol; 2018; 1685():297-309. PubMed ID: 29086317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The potential of microfluidic water-in-oil droplets in experimental biology.
    Schaerli Y; Hollfelder F
    Mol Biosyst; 2009 Dec; 5(12):1392-404. PubMed ID: 20023716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ultrahigh-throughput sorting of microfluidic drops with flow cytometry.
    Lim SW; Abate AR
    Lab Chip; 2013 Dec; 13(23):4563-72. PubMed ID: 24146020
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrahigh-throughput-directed enzyme evolution by absorbance-activated droplet sorting (AADS).
    Gielen F; Hours R; Emond S; Fischlechner M; Schell U; Hollfelder F
    Proc Natl Acad Sci U S A; 2016 Nov; 113(47):E7383-E7389. PubMed ID: 27821774
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling the retention of small molecules in emulsion microdroplets for use in cell-based assays.
    Courtois F; Olguin LF; Whyte G; Theberge AB; Huck WT; Hollfelder F; Abell C
    Anal Chem; 2009 Apr; 81(8):3008-16. PubMed ID: 19284775
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A microfluidic approach for high-throughput droplet interface bilayer (DIB) formation.
    Stanley CE; Elvira KS; Niu XZ; Gee AD; Ces O; Edel JB; Demello AJ
    Chem Commun (Camb); 2010 Mar; 46(10):1620-2. PubMed ID: 20177594
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensitive, high throughput detection of proteins in individual, surfactant-stabilized picoliter droplets using nanoelectrospray ionization mass spectrometry.
    Smith CA; Li X; Mize TH; Sharpe TD; Graziani EI; Abell C; Huck WT
    Anal Chem; 2013 Apr; 85(8):3812-6. PubMed ID: 23514243
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Droplets as reaction compartments for protein nanotechnology.
    Devenish SR; Kaltenbach M; Fischlechner M; Hollfelder F
    Methods Mol Biol; 2013; 996():269-86. PubMed ID: 23504430
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cell-free Directed Evolution of a Protease in Microdroplets at Ultrahigh Throughput.
    Holstein JM; Gylstorff C; Hollfelder F
    ACS Synth Biol; 2021 Feb; 10(2):252-257. PubMed ID: 33502841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A completely in vitro ultrahigh-throughput droplet-based microfluidic screening system for protein engineering and directed evolution.
    Fallah-Araghi A; Baret JC; Ryckelynck M; Griffiths AD
    Lab Chip; 2012 Mar; 12(5):882-91. PubMed ID: 22277990
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput screening of enzyme libraries: thiolactonases evolved by fluorescence-activated sorting of single cells in emulsion compartments.
    Aharoni A; Amitai G; Bernath K; Magdassi S; Tawfik DS
    Chem Biol; 2005 Dec; 12(12):1281-9. PubMed ID: 16356845
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Picoliter-volume aqueous droplets in oil: electrochemical detection and yeast cell electroporation.
    Luo C; Yang X; Fu Q; Sun M; Ouyang Q; Chen Y; Ji H
    Electrophoresis; 2006 May; 27(10):1977-83. PubMed ID: 16596709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput, Lysis-Free Screening for Sulfatase Activity Using
    van Loo B; Heberlein M; Mair P; Zinchenko A; Schüürmann J; Eenink BDG; Holstein JM; Dilkaute C; Jose J; Hollfelder F; Bornberg-Bauer E
    ACS Synth Biol; 2019 Dec; 8(12):2690-2700. PubMed ID: 31738524
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A PMMA microfluidic droplet platform for in vitro protein expression using crude E. coli S30 extract.
    Wu N; Zhu Y; Brown S; Oakeshott J; Peat TS; Surjadi R; Easton C; Leech PW; Sexton BA
    Lab Chip; 2009 Dec; 9(23):3391-8. PubMed ID: 19904406
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Miniaturization and parallelization of biological and chemical assays in microfluidic devices.
    Vyawahare S; Griffiths AD; Merten CA
    Chem Biol; 2010 Oct; 17(10):1052-65. PubMed ID: 21035727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Droplet microfluidics--a tool for single-cell analysis.
    Joensson HN; Andersson Svahn H
    Angew Chem Int Ed Engl; 2012 Dec; 51(49):12176-92. PubMed ID: 23180509
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A simple method to evaluate the biochemical compatibility of oil/surfactant mixtures for experiments in microdroplets.
    Kaltenbach M; Devenish SR; Hollfelder F
    Lab Chip; 2012 Oct; 12(20):4185-92. PubMed ID: 22885600
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.