BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

161 related articles for article (PubMed ID: 22921252)

  • 1. Generation of electricity from FeCl3 pretreatment of rice straw using a fuel cell system.
    Kim I; Saif Ur Rehman M; Kim KH; Han JI
    Bioresour Technol; 2013 May; 135():635-9. PubMed ID: 22921252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimization of microwave-assisted FeCl3 pretreatment conditions of rice straw and utilization of Trichoderma viride and Bacillus pumilus for production of reducing sugars.
    Lü J; Zhou P
    Bioresour Technol; 2011 Jul; 102(13):6966-71. PubMed ID: 21561766
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ferric iron enhances electricity generation by Shewanella oneidensis MR-1 in MFCs.
    Wu D; Xing D; Lu L; Wei M; Liu B; Ren N
    Bioresour Technol; 2013 May; 135():630-4. PubMed ID: 23127834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Fe-chelating complexes on a novel M2FC performance with ferric chloride and ferricyanide catholytes.
    Chung K; Lee I; Han JI
    Chemosphere; 2012 Jan; 86(4):415-9. PubMed ID: 22018860
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Utilization of hydrolysate from lignocellulosic biomass pretreatment to generate electricity by enzymatic fuel cell system.
    Kim SB; Kim DS; Yang JH; Lee J; Kim SW
    Enzyme Microb Technol; 2016 Apr; 85():32-7. PubMed ID: 26920478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electricity generation from synthetic acid-mine drainage (AMD) water using fuel cell technologies.
    Cheng S; Dempsey BA; Logan BE
    Environ Sci Technol; 2007 Dec; 41(23):8149-53. PubMed ID: 18186351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of a hybrid microbial fuel cell (MFC) and fuel cell (FC) system for improved cathodic efficiency and sustainability: the M2FC reactor.
    Eom H; Chung K; Kim I; Han JI
    Chemosphere; 2011 Oct; 85(4):672-6. PubMed ID: 21752422
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mimicking the Fenton reaction-induced wood decay by fungi for pretreatment of lignocellulose.
    Jung YH; Kim HK; Park HM; Park YC; Park K; Seo JH; Kim KH
    Bioresour Technol; 2015 Mar; 179():467-472. PubMed ID: 25575206
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effective sulfur and energy recovery from hydrogen sulfide through incorporating an air-cathode fuel cell into chelated-iron process.
    Sun M; Song W; Zhai LF; Cui YZ
    J Hazard Mater; 2013 Dec; 263 Pt 2():643-9. PubMed ID: 24220197
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphomolybdic acid and ferric iron as efficient electron mediators for coupling biomass pretreatment to produce bioethanol and electricity generation from wheat straw.
    Ding Y; Du B; Zhao X; Zhu JY; Liu D
    Bioresour Technol; 2017 Mar; 228():279-289. PubMed ID: 28081526
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electricity production from xylose using a mediator-less microbial fuel cell.
    Huang L; Zeng RJ; Angelidaki I
    Bioresour Technol; 2008 Jul; 99(10):4178-84. PubMed ID: 17964145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Significantly enhancing enzymatic hydrolysis of rice straw after pretreatment using renewable ionic liquid-water mixtures.
    Hou XD; Li N; Zong MH
    Bioresour Technol; 2013 May; 136():469-74. PubMed ID: 23567718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies.
    Cheng S; Jang JH; Dempsey BA; Logan BE
    Water Res; 2011 Jan; 45(1):303-7. PubMed ID: 20701945
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FeCl3 and acetic acid co-catalyzed hydrolysis of corncob for improving furfural production and lignin removal from residue.
    Mao L; Zhang L; Gao N; Li A
    Bioresour Technol; 2012 Nov; 123():324-31. PubMed ID: 22940337
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-iron ions mediated electron transfer for biomass pretreatment coupling with direct generation of electricity from lignocellulose.
    Ouyang D; Han Y; Wang F; Zhao X
    Bioresour Technol; 2022 Jan; 344(Pt B):126189. PubMed ID: 34748975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electricity production from xylose in fed-batch and continuous-flow microbial fuel cells.
    Huang L; Logan BE
    Appl Microbiol Biotechnol; 2008 Sep; 80(4):655-64. PubMed ID: 18626640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and characterization of a microbial fuel cell for the conversion of a lignocellulosic crop residue to electricity.
    Gregoire KP; Becker JG
    Bioresour Technol; 2012 Sep; 119():208-15. PubMed ID: 22728202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioelectrochemical treatment of acid mine drainage dominated with iron.
    Lefebvre O; Neculita CM; Yue X; Ng HY
    J Hazard Mater; 2012 Nov; 241-242():411-7. PubMed ID: 23084427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of procedures to acclimate a microbial fuel cell for electricity production.
    Kim JR; Min B; Logan BE
    Appl Microbiol Biotechnol; 2005 Jul; 68(1):23-30. PubMed ID: 15647935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electricity generation from bio-treatment of sewage sludge with microbial fuel cell.
    Jiang J; Zhao Q; Zhang J; Zhang G; Lee DJ
    Bioresour Technol; 2009 Dec; 100(23):5808-12. PubMed ID: 19615894
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.