These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 22921299)

  • 21. Optical measurements of vocal fold tensile properties: implications for phonatory mechanics.
    Kelleher JE; Siegmund T; Chan RW; Henslee EA
    J Biomech; 2011 Jun; 44(9):1729-34. PubMed ID: 21497355
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biaxial mechanical properties of human vocal fold cover under vocal fold elongation.
    Zhang Z; Samajder H; Long JL
    J Acoust Soc Am; 2017 Oct; 142(4):EL356. PubMed ID: 29092582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mechanical characterization of vocal fold tissue: a review study.
    Miri AK
    J Voice; 2014 Nov; 28(6):657-67. PubMed ID: 25008382
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dynamic Biomechanical Analysis of Vocal Folds Using Pipette Aspiration Technique.
    Scheible F; Lamprecht R; Semmler M; Sutor A
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33919359
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effects of dehydration on the viscoelastic properties of vocal folds in large deformations.
    Miri AK; Barthelat F; Mongeau L
    J Voice; 2012 Nov; 26(6):688-97. PubMed ID: 22483778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Modeling of the transient responses of the vocal fold lamina propria.
    Zhang K; Siegmund T; Chan RW
    J Mech Behav Biomed Mater; 2009 Jan; 2(1):93-104. PubMed ID: 19122858
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Viscoelastic properties of human aryepiglottic fold and ventricular fold tissues at phonatory frequencies.
    Kimura M; Chan RW
    Laryngoscope; 2018 Aug; 128(8):E296-E301. PubMed ID: 29243255
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon.
    Lynch HA; Johannessen W; Wu JP; Jawa A; Elliott DM
    J Biomech Eng; 2003 Oct; 125(5):726-31. PubMed ID: 14618932
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Adapted to roar: functional morphology of tiger and lion vocal folds.
    Klemuk SA; Riede T; Walsh EJ; Titze IR
    PLoS One; 2011; 6(11):e27029. PubMed ID: 22073246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The shear modulus of the human vocal fold in a transverse direction.
    Goodyer E; Welham NV; Choi SH; Yamashita M; Dailey SH
    J Voice; 2009 Mar; 23(2):151-5. PubMed ID: 18215500
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mechanics of human vocal folds layers during finite strains in tension, compression and shear.
    Cochereau T; Bailly L; Orgéas L; Henrich Bernardoni N; Robert Y; Terrien M
    J Biomech; 2020 Sep; 110():109956. PubMed ID: 32827774
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hyaluronic acid (with fibronectin) as a bioimplant for the vocal fold mucosa.
    Chan RW; Titze IR
    Laryngoscope; 1999 Jul; 109(7 Pt 1):1142-9. PubMed ID: 10401858
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanics of fundamental frequency regulation: Constitutive modeling of the vocal fold lamina propria.
    Chan RW; Siegmund T; Zhang K
    Logoped Phoniatr Vocol; 2009 Dec; 34(4):181-9. PubMed ID: 19415568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Measurements of vocal fold tissue viscoelasticity: approaching the male phonatory frequency range.
    Chan RW
    J Acoust Soc Am; 2004 Jun; 115(6):3161-70. PubMed ID: 15237840
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Rheometric properties of canine vocal fold tissues: variation with anatomic location.
    Kimura M; Mau T; Chan RW
    Auris Nasus Larynx; 2011 Jun; 38(3):367-72. PubMed ID: 21035291
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Local vascularized flaps for augmentation of Reinke's space.
    Dailey SH; Gunderson M; Chan R; Torrealba J; Kimura M; Welham NV
    Laryngoscope; 2011 Feb; 121 Suppl 3(Suppl 3):S37-60. PubMed ID: 21271606
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Predictions of fundamental frequency changes during phonation based on a biomechanical model of the vocal fold lamina propria.
    Zhang K; Siegmund T; Chan RW; Fu M
    J Voice; 2009 May; 23(3):277-82. PubMed ID: 18191379
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Viscoelastic shear properties of human vocal fold mucosa: measurement methodology and empirical results.
    Chan RW; Titze IR
    J Acoust Soc Am; 1999 Oct; 106(4 Pt 1):2008-21. PubMed ID: 10530024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Estimation of viscoelastic shear properties of vocal-fold tissues based on time-temperature superposition.
    Chan RW
    J Acoust Soc Am; 2001 Sep; 110(3 Pt 1):1548-61. PubMed ID: 11572365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Determination of strain field on the superior surface of excised larynx vocal folds using DIC.
    Bakhshaee H; Young J; Yang JC; Mongeau L; Miri AK
    J Voice; 2013 Nov; 27(6):659-67. PubMed ID: 24070590
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.