These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22921299)

  • 41. Functional assessment of the ex vivo vocal folds through biomechanical testing: A review.
    Dion GR; Jeswani S; Roof S; Fritz M; Coelho PG; Sobieraj M; Amin MR; Branski RC
    Mater Sci Eng C Mater Biol Appl; 2016 Jul; 64():444-453. PubMed ID: 27127075
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Three-dimensional biomechanical properties of human vocal folds: parameter optimization of a numerical model to match in vitro dynamics.
    Yang A; Berry DA; Kaltenbacher M; Döllinger M
    J Acoust Soc Am; 2012 Feb; 131(2):1378-90. PubMed ID: 22352511
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The importance of hyaluronic acid in vocal fold biomechanics.
    Chan RW; Gray SD; Titze IR
    Otolaryngol Head Neck Surg; 2001 Jun; 124(6):607-14. PubMed ID: 11391249
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Fracture Toughness of Vocal Fold Tissue: A Preliminary Study.
    Miri AK; Chen LX; Mongrain R; Mongeau L
    J Voice; 2016 May; 30(3):251-4. PubMed ID: 26089242
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect of Longitudinal Variation of Vocal Fold Inner Layer Thickness on Fluid-Structure Interaction During Voice Production.
    Jiang W; Xue Q; Zheng X
    J Biomech Eng; 2018 Dec; 140(12):1210081-9. PubMed ID: 30098145
    [TBL] [Abstract][Full Text] [Related]  

  • 46. In vivo measurement of the shear modulus of the human vocal fold: interim results from eight patients.
    Goodyer E; Müller F; Licht K; Hess M
    Eur Arch Otorhinolaryngol; 2007 Jun; 264(6):631-5. PubMed ID: 17285333
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dependence of phonation threshold pressure and frequency on vocal fold geometry and biomechanics.
    Zhang Z
    J Acoust Soc Am; 2010 Apr; 127(4):2554-62. PubMed ID: 20370037
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Depth-Dependent Out-of-Plane Young's Modulus of the Human Cornea.
    Ramirez-Garcia MA; Sloan SR; Nidenberg B; Khalifa YM; Buckley MR
    Curr Eye Res; 2018 May; 43(5):595-604. PubMed ID: 29283675
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Biomechanical Flow Amplification Arising From the Variable Deformation of the Subglottic Mucosa.
    Goodyer E; Müller F; Hess M; Kandan K; Farukh F
    J Voice; 2017 Nov; 31(6):669-674. PubMed ID: 28433346
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Sensitivity of vocal fold vibratory modes to their three-layer structure: implications for computational modeling of phonation.
    Xue Q; Zheng X; Bielamowicz S; Mittal R
    J Acoust Soc Am; 2011 Aug; 130(2):965-76. PubMed ID: 21877809
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Dependence of phonation threshold pressure on vocal tract acoustics and vocal fold tissue mechanics.
    Chan RW; Titze IR
    J Acoust Soc Am; 2006 Apr; 119(4):2351-62. PubMed ID: 16642848
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Measurement of the elasticity modulus of soft tissues.
    Zörner S; Kaltenbacher M; Lerch R; Sutor A; Döllinger M
    J Biomech; 2010 May; 43(8):1540-5. PubMed ID: 20189571
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Modal response of a computational vocal fold model with a substrate layer of adipose tissue.
    Jones CL; Achuthan A; Erath BD
    J Acoust Soc Am; 2015 Feb; 137(2):EL158-64. PubMed ID: 25698044
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The influence of material anisotropy on vibration at onset in a three-dimensional vocal fold model.
    Zhang Z
    J Acoust Soc Am; 2014 Mar; 135(3):1480-90. PubMed ID: 24606284
    [TBL] [Abstract][Full Text] [Related]  

  • 55. In vivo vocal fold cover layer replacement.
    Long J; Salinas J; Rafizadeh S; Luegmair G; Zhang Z; Chhetri D
    Laryngoscope; 2015 Feb; 125(2):406-11. PubMed ID: 25215877
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A numerical analysis of phonation using a two-dimensional flexible channel model of the vocal folds.
    Ikeda T; Matsuzaki Y; Aomatsu T
    J Biomech Eng; 2001 Dec; 123(6):571-9. PubMed ID: 11783728
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Phonation threshold pressure and onset frequency in a two-layer physical model of the vocal folds.
    Mendelsohn AH; Zhang Z
    J Acoust Soc Am; 2011 Nov; 130(5):2961-8. PubMed ID: 22087924
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Impact of Cricothyroid Muscle Contraction on Vocal Fold Vibration: Experimental Study with High-Speed Videoendoscopy.
    Ishikawa CC; Pinheiro TG; Hachiya A; Montagnoli AN; Tsuji DH
    J Voice; 2017 May; 31(3):300-306. PubMed ID: 27692725
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Verification of two minimally invasive methods for the estimation of the contact pressure in human vocal folds during phonation.
    Chen LJ; Mongeau L
    J Acoust Soc Am; 2011 Sep; 130(3):1618-27. PubMed ID: 21895099
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Viscoelastic shear properties of human vocal fold mucosa: theoretical characterization based on constitutive modeling.
    Chan RW; Titze IR
    J Acoust Soc Am; 2000 Jan; 107(1):565-80. PubMed ID: 10641665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.