These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 22921394)

  • 1. Determination of copper speciation in highway stormwater runoff using competitive ligand exchange - Adsorptive cathodic stripping voltammetry.
    Nason JA; Sprick MS; Bloomquist DJ
    Water Res; 2012 Nov; 46(17):5788-5798. PubMed ID: 22921394
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial variability of total dissolved copper and copper speciation in the inshore waters of Bermuda.
    Oldham VE; Swenson MM; Buck KN
    Mar Pollut Bull; 2014 Feb; 79(1-2):314-20. PubMed ID: 24461699
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of copper speciation in coastal marine waters measured using analytical voltammetry and diffusion gradient in thin-film techniques.
    Twiss MR; Moffett JW
    Environ Sci Technol; 2002 Mar; 36(5):1061-8. PubMed ID: 11917992
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Attenuation of copper in runoff from copper roofing materials by two stormwater control measures.
    LaBarre WJ; Ownby DR; Lev SM; Rader KJ; Casey RE
    Water Res; 2016 Jan; 88():207-215. PubMed ID: 26497938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong copper-binding behavior of terrestrial humic substances in seawater.
    Kogut MB; Voelker BM
    Environ Sci Technol; 2001 Mar; 35(6):1149-56. PubMed ID: 11347927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Model predictions of copper speciation in coastal water compared to measurements by analytical voltammetry.
    Ndungu K
    Environ Sci Technol; 2012 Jul; 46(14):7644-52. PubMed ID: 22724636
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of organic complexation on copper accumulation and toxicity to the estuarine red macroalga Ceramium tenuicorne: a test of the free ion activity model.
    Ytreberg E; Karlsson J; Hoppe S; Eklund B; Ndungu K
    Environ Sci Technol; 2011 Apr; 45(7):3145-53. PubMed ID: 21391651
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Predicting Copper Speciation in Estuarine Waters-Is Dissolved Organic Carbon a Good Proxy for the Presence of Organic Ligands?
    Pearson HB; Comber SD; Braungardt C; Worsfold PJ
    Environ Sci Technol; 2017 Feb; 51(4):2206-2216. PubMed ID: 28098987
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Copper (II) complexation in northern California rice field waters: an investigation using differential pulse anodic and cathodic stripping voltammetry.
    Witter AE; Mabury SA; Jones AD
    Sci Total Environ; 1998 Mar; 212(1):21-37. PubMed ID: 9525045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper speciation by competing ligand exchange method using differential pulse anodic stripping voltammetry with ethylenediaminetetraacetic acid (EDTA) as competing ligand.
    Wang R; Chakrabarti CL
    Anal Chim Acta; 2008 May; 614(2):153-60. PubMed ID: 18420045
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterisation of iron binding ligands in seawater by reverse titration.
    Hawkes JA; Gledhill M; Connelly DP; Achterberg EP
    Anal Chim Acta; 2013 Mar; 766():53-60. PubMed ID: 23427800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct simultaneous determination of Co, Cu, Fe, Ni and V in pore waters by means of adsorptive cathodic stripping voltammetry with mixed ligands.
    Santos-Echeandía J
    Talanta; 2011 Jul; 85(1):506-12. PubMed ID: 21645733
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Iron organic speciation determination in rainwater using cathodic stripping voltammetry.
    Cheize M; Sarthou G; Croot PL; Bucciarelli E; Baudoux AC; Baker AR
    Anal Chim Acta; 2012 Jul; 736():45-54. PubMed ID: 22769004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Use of a modified, high-sensitivity, anodic stripping voltammetry method for determination of zinc speciation in the North Atlantic Ocean.
    Jakuba RW; Moffett JW; Saito MA
    Anal Chim Acta; 2008 May; 614(2):143-52. PubMed ID: 18420044
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of copper-binding ligands in Fram Strait and influences from the Greenland Shelf (GEOTRACES GN05).
    Arnone V; Santana-Casiano JM; González-Dávila M; Sarthou G; Krisch S; Lodeiro P; Achterberg EP; González AG
    Sci Total Environ; 2024 Jan; 909():168162. PubMed ID: 37952666
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic adsorptive stripping voltammetric determination of copper(II) on a carbon paste electrode.
    Liu N; Song JF
    Anal Bioanal Chem; 2005 Sep; 383(2):358-64. PubMed ID: 16132127
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pesticidal copper (I) oxide: environmental fate and aquatic toxicity.
    Kiaune L; Singhasemanon N
    Rev Environ Contam Toxicol; 2011; 213():1-26. PubMed ID: 21541846
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper(II) binding by dissolved organic matter: importance of the copper-to-dissolved organic matter ratio and implications for the biotic ligand model.
    Craven AM; Aiken GR; Ryan JN
    Environ Sci Technol; 2012 Sep; 46(18):9948-55. PubMed ID: 22871072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Strong colloidal and dissolved organic ligands binding copper and zinc in rivers.
    Hoffmann SR; Shafer MM; Armstrong DE
    Environ Sci Technol; 2007 Oct; 41(20):6996-7002. PubMed ID: 17993139
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Organic Copper Speciation by Anodic Stripping Voltammetry in Estuarine Waters With High Dissolved Organic Matter.
    Pađan J; Marcinek S; Cindrić AM; Santinelli C; Retelletti Brogi S; Radakovitch O; Garnier C; Omanović D
    Front Chem; 2020; 8():628749. PubMed ID: 33634075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.