BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 22921395)

  • 1. Comparative study of simultaneous removal of As, Cu, and Pb using different combinations of electrokinetics with bioleaching by Acidithiobacillus ferrooxidans.
    Kim HA; Lee KY; Lee BT; Kim SO; Kim KW
    Water Res; 2012 Nov; 46(17):5591-5599. PubMed ID: 22921395
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Heavy metal removal from shooting range soil by hybrid electrokinetics with bacteria and enhancing agents.
    Lee KY; Kim KW
    Environ Sci Technol; 2010 Dec; 44(24):9482-7. PubMed ID: 21090604
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioleaching of metals from printed wire boards by Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans and their mixture.
    Wang J; Bai J; Xu J; Liang B
    J Hazard Mater; 2009 Dec; 172(2-3):1100-5. PubMed ID: 19699031
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans in arsenic bioleaching from soil.
    Ko MS; Park HS; Kim KW; Lee JU
    Environ Geochem Health; 2013 Dec; 35(6):727-33. PubMed ID: 23709230
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A feasibility study on bioelectrokinetics for the removal of heavy metals from tailing soil.
    Lee KY; Kim HA; Lee BT; Kim SO; Kwon YH; Kim KW
    Environ Geochem Health; 2011 Jan; 33 Suppl 1():3-11. PubMed ID: 21046430
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel combination of anaerobic bioleaching and electrokinetics for arsenic removal from mine tailing soil.
    Lee KY; Yoon IH; Lee BT; Kim SO; Kim KW
    Environ Sci Technol; 2009 Dec; 43(24):9354-60. PubMed ID: 20000529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fractionation behavior of heavy metals in soil during bioleaching with Acidithiobacillus thiooxidans.
    Naresh Kumar R; Nagendran R
    J Hazard Mater; 2009 Sep; 169(1-3):1119-26. PubMed ID: 19464109
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The bioleaching potential of a bacterial consortium.
    Latorre M; Cortés MP; Travisany D; Di Genova A; Budinich M; Reyes-Jara A; Hödar C; González M; Parada P; Bobadilla-Fazzini RA; Cambiazo V; Maass A
    Bioresour Technol; 2016 Oct; 218():659-66. PubMed ID: 27416516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bioleaching of metals from steel slag by Acidithiobacillus thiooxidans culture supernatant.
    Hocheng H; Su C; Jadhav UU
    Chemosphere; 2014 Dec; 117():652-7. PubMed ID: 25461931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduction of arsenic content in a complex galena concentrate by Acidithiobacillus ferrooxidans.
    Makita M; Esperón M; Pereyra B; López A; Orrantia E
    BMC Biotechnol; 2004 Oct; 4():22. PubMed ID: 15482595
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans.
    Kumar RN; Nagendran R
    Chemosphere; 2007 Jan; 66(9):1775-81. PubMed ID: 16979697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbial community succession mechanism coupling with adaptive evolution of adsorption performance in chalcopyrite bioleaching.
    Feng S; Yang H; Wang W
    Bioresour Technol; 2015 Sep; 191():37-44. PubMed ID: 25978855
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioleaching of realgar by Acidithiobacillus ferrooxidans using ferrous iron and elemental sulfur as the sole and mixed energy sources.
    Chen P; Yan L; Leng F; Nan W; Yue X; Zheng Y; Feng N; Li H
    Bioresour Technol; 2011 Feb; 102(3):3260-7. PubMed ID: 21146407
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in nutrient profile of soil subjected to bioleaching for removal of heavy metals using Acidithiobacillus thiooxidans.
    NareshKumar R; Nagendran R
    J Hazard Mater; 2008 Aug; 156(1-3):102-7. PubMed ID: 18206305
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioleaching in batch tests for improving sludge dewaterability and metal removal using Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans after cold acclimation.
    Zhou Q; Gao J; Li Y; Zhu S; He L; Nie W; Zhang R
    Water Sci Technol; 2017 Sep; 76(5-6):1347-1359. PubMed ID: 28953461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adhesion forces between cells of Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans or Leptospirillum ferrooxidans and chalcopyrite.
    Zhu J; Li Q; Jiao W; Jiang H; Sand W; Xia J; Liu X; Qin W; Qiu G; Hu Y; Chai L
    Colloids Surf B Biointerfaces; 2012 Jun; 94():95-100. PubMed ID: 22341516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Two-step bioleaching of copper and gold from discarded printed circuit boards (PCB).
    Işıldar A; van de Vossenberg J; Rene ER; van Hullebusch ED; Lens PN
    Waste Manag; 2016 Nov; 57():149-157. PubMed ID: 26704063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrochemical effect on bioleaching of arsenic and manganese from tungsten mine wastes using Acidithiobacillus spp.
    Nguyen VK; Ha MG; Shin S; Seo M; Jang J; Jo S; Kim D; Lee S; Jung Y; Kang P; Shin C; Ahn Y
    J Environ Manage; 2018 Oct; 223():852-859. PubMed ID: 29986334
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biolixiviation of Metals from Computer Printed Circuit Boards by Acidithiobacillus ferrooxidans and Bioremoval of Metals by Mixed Culture Subjected to a Magnetic Field.
    Silva JG; da Silva MT; Dias RM; Cardoso VL; de Resende MM
    Curr Microbiol; 2023 Apr; 80(6):197. PubMed ID: 37119300
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistic bioleaching of chalcopyrite and bornite in the presence of Acidithiobacillus ferrooxidans.
    Zhao H; Wang J; Hu M; Qin W; Zhang Y; Qiu G
    Bioresour Technol; 2013 Dec; 149():71-6. PubMed ID: 24084207
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.