These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
80 related articles for article (PubMed ID: 22921409)
1. Anomalous dependence of particle size on supersaturation in the preparation of iron nanoparticles from iron pentacarbonyl. Huuppola M; Zhu Z; Johansson LS; Kontturi K; Laasonen K; Johans C J Colloid Interface Sci; 2012 Nov; 386(1):28-33. PubMed ID: 22921409 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and characterization of magnetic poly(divinyl benzene)/Fe3O4, C/Fe3O4/Fe, and C/Fe onionlike fullerene micrometer-sized particles with a narrow size distribution. Snovski R; Grinblat J; Margel S Langmuir; 2011 Sep; 27(17):11071-80. PubMed ID: 21806045 [TBL] [Abstract][Full Text] [Related]
4. Field evaluation of nanofilm detectors for measuring acidic particles in indoor and outdoor air. Cohen BS; Heikkinen MS; Hazi Y; Gao H; Peters P; Lippmann M Res Rep Health Eff Inst; 2004 Sep; (121):1-35; discussion 37-46. PubMed ID: 15553489 [TBL] [Abstract][Full Text] [Related]
5. Iron particle size effects for direct production of lower olefins from synthesis gas. Torres Galvis HM; Bitter JH; Davidian T; Ruitenbeek M; Dugulan AI; de Jong KP J Am Chem Soc; 2012 Oct; 134(39):16207-15. PubMed ID: 22953753 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of highly crystalline and monodisperse maghemite nanocrystallites without a size-selection process. Hyeon T; Lee SS; Park J; Chung Y; Na HB J Am Chem Soc; 2001 Dec; 123(51):12798-801. PubMed ID: 11749537 [TBL] [Abstract][Full Text] [Related]
8. Controlling the size and the activity of Fe particles for synthesis of carbon nanotubes. Chee SW; Sharma R Micron; 2012 Nov; 43(11):1181-7. PubMed ID: 22349468 [TBL] [Abstract][Full Text] [Related]
9. A kinetic study of the ring-opening process in tungsten carbonyl complexes containing hemilabile metallodithiolate ligands. Phelps AL; Rampersad MV; Fitch SB; Darensbourg MY; Darensbourg DJ Inorg Chem; 2006 Jan; 45(1):119-26. PubMed ID: 16390047 [TBL] [Abstract][Full Text] [Related]
12. Recovery of silver nanoparticles synthesized on AOT/C(12)E(4) mixed reverse micelles by antisolvent CO(2). Zhang J; Han B; Liu J; Zhang X; He J; Liu Z; Jiang T; Yang G Chemistry; 2002 Sep; 8(17):3879-83. PubMed ID: 12360929 [TBL] [Abstract][Full Text] [Related]
13. Characterization of iron hydroxide/oxide nanoparticles prepared in microemulsions stabilized with cationic/non-ionic surfactant mixtures. Bumajdad A; Ali S; Mathew A J Colloid Interface Sci; 2011 Mar; 355(2):282-92. PubMed ID: 21232750 [TBL] [Abstract][Full Text] [Related]
14. Preparation of Monodisperse, Micron-Sized Polystyrene Particles with Single-Stage Polymerization in Aqueous Media. Gu S; Mogi T; Konno M J Colloid Interface Sci; 1998 Nov; 207(1):113-118. PubMed ID: 9778397 [TBL] [Abstract][Full Text] [Related]
15. CO dissociation on iron nanoparticles: size and geometry effects. Melander M; Latsa V; Laasonen K J Chem Phys; 2013 Oct; 139(16):164320. PubMed ID: 24182042 [TBL] [Abstract][Full Text] [Related]
16. Controlling the size of magnetic nanoparticles using pluronic block copolymer surfactants. Lai JI; Shafi KV; Ulman A; Loos K; Lee Y; Vogt T; Lee WL; Ong NP; Estournès C J Phys Chem B; 2005 Jan; 109(1):15-8. PubMed ID: 16850974 [TBL] [Abstract][Full Text] [Related]
17. Preparation and properties of inhalable nanocomposite particles: effects of the size, weight ratio of the primary nanoparticles in nanocomposite particles and temperature at a spray-dryer inlet upon properties of nanocomposite particles. Tomoda K; Ohkoshi T; Nakajima T; Makino K Colloids Surf B Biointerfaces; 2008 Jun; 64(1):70-6. PubMed ID: 18343097 [TBL] [Abstract][Full Text] [Related]
18. Size-controlled synthesis of monodispersed silver nanoparticles capped by long-chain alkyl carboxylates from silver carboxylate and tertiary amine. Yamamoto M; Kashiwagi Y; Nakamoto M Langmuir; 2006 Sep; 22(20):8581-6. PubMed ID: 16981779 [TBL] [Abstract][Full Text] [Related]
19. Formation of nanoparticles in flames; measurement by particle mass spectrometry and numerical simulation. Paur HR; Baumann W; Mätzing H; Seifert H Nanotechnology; 2005 Jul; 16(7):S354-61. PubMed ID: 21727452 [TBL] [Abstract][Full Text] [Related]
20. Morphology and electronic structure of the oxide shell on the surface of iron nanoparticles. Wang C; Baer DR; Amonette JE; Engelhard MH; Antony J; Qiang Y J Am Chem Soc; 2009 Jul; 131(25):8824-32. PubMed ID: 19496564 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]