These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 22921613)
1. A multi-physics and multi-scale lumped parameter model of cardiac contraction of the left ventricle: a conceptual model from the protein to the organ scale. Bhattacharya-Ghosh B; Schievano S; Díaz-Zuccarini V Comput Biol Med; 2012 Oct; 42(10):982-92. PubMed ID: 22921613 [TBL] [Abstract][Full Text] [Related]
2. A new multi-scale simulation model of the circulation: from cells to system. Shim EB; Leem CH; Abe Y; Noma A Philos Trans A Math Phys Eng Sci; 2006 Jun; 364(1843):1483-500. PubMed ID: 16766356 [TBL] [Abstract][Full Text] [Related]
3. Computer simulation of excitation-contraction coupling in cardiac muscle. A study of the regulatory role of calcium binding to troponin C. Michailova A; Spassov V Gen Physiol Biophys; 1997 Mar; 16(1):29-38. PubMed ID: 9290941 [TBL] [Abstract][Full Text] [Related]
4. An energetically coherent lumped parameter model of the left ventricle specially developed for educational purposes. Díaz-Zuccarini V; LeFèvre J Comput Biol Med; 2007 Jun; 37(6):774-84. PubMed ID: 17052704 [TBL] [Abstract][Full Text] [Related]
5. The cross-bridge dynamics during ventricular contraction predicted by coupling the cardiac cell model with a circulation model. Shim EB; Amano A; Takahata T; Shimayoshi T; Noma A J Physiol Sci; 2007 Oct; 57(5):275-85. PubMed ID: 17916279 [TBL] [Abstract][Full Text] [Related]
6. Activation dependence of stretch activation in mouse skinned myocardium: implications for ventricular function. Stelzer JE; Larsson L; Fitzsimons DP; Moss RL J Gen Physiol; 2006 Feb; 127(2):95-107. PubMed ID: 16446502 [TBL] [Abstract][Full Text] [Related]
7. Computational modeling of electromechanical propagation in the helical ventricular anatomy of the heart. Marcé-Nogué J; Fortuny G; Ballester-Rodés M; Carreras F; Roure F Comput Biol Med; 2013 Nov; 43(11):1698-703. PubMed ID: 24209915 [TBL] [Abstract][Full Text] [Related]
8. A multi-scale computational method applied to the quantitative evaluation of the left ventricular function. Liang F; Taniguchi H; Liu H Comput Biol Med; 2007 May; 37(5):700-15. PubMed ID: 16914132 [TBL] [Abstract][Full Text] [Related]
9. Critical role of cardiac t-tubule system for the maintenance of contractile function revealed by a 3D integrated model of cardiomyocytes. Hatano A; Okada J; Hisada T; Sugiura S J Biomech; 2012 Mar; 45(5):815-23. PubMed ID: 22226404 [TBL] [Abstract][Full Text] [Related]
10. Explaining load dependence of ventricular contractile properties with a model of excitation-contraction coupling. Burkhoff D J Mol Cell Cardiol; 1994 Aug; 26(8):959-78. PubMed ID: 7799451 [TBL] [Abstract][Full Text] [Related]
12. A mechanical model of the human heart relating septal function to myocardial work and energy. Luo C; Ware DL; Zwischenberger JB; Clark JW Cardiovasc Eng; 2008 Sep; 8(3):174-84. PubMed ID: 18543102 [TBL] [Abstract][Full Text] [Related]
13. [A biomechanical model of left ventricle regional ischemia: a computer simulation]. Hao WY; Li WH; Bai J Space Med Med Eng (Beijing); 2001 Oct; 14(5):350-4. PubMed ID: 11842851 [TBL] [Abstract][Full Text] [Related]
14. Intracellular kinetics of the activator calcium of rat heart after ischemic arrest and cardioplegia: quantitative comparison of right and left ventricles. Juggi JS; Mesaeli N; Yousof AM Can J Cardiol; 1992 May; 8(4):387-95. PubMed ID: 1377592 [TBL] [Abstract][Full Text] [Related]
15. An in silico case study of idiopathic dilated cardiomyopathy via a multi-scale model of the cardiovascular system. Bhattacharya-Ghosh B; Bozkurt S; Rutten MC; van de Vosse FN; Díaz-Zuccarini V Comput Biol Med; 2014 Oct; 53():141-53. PubMed ID: 25147131 [TBL] [Abstract][Full Text] [Related]
16. Towards a biomechanics-based technique for assessing myocardial contractility: an inverse problem approach. Linte CA; Wierzbicki M; Peters TM; Samani A Comput Methods Biomech Biomed Engin; 2008 Jun; 11(3):243-55. PubMed ID: 18568822 [TBL] [Abstract][Full Text] [Related]
17. Sarcomere mechanics in uniform and non-uniform cardiac muscle: a link between pump function and arrhythmias. ter Keurs HE; Shinozaki T; Zhang YM; Zhang ML; Wakayama Y; Sugai Y; Kagaya Y; Miura M; Boyden PA; Stuyvers BD; Landesberg A Prog Biophys Mol Biol; 2008; 97(2-3):312-31. PubMed ID: 18394686 [TBL] [Abstract][Full Text] [Related]
18. Force-dependent recruitment from myosin OFF-state increases end-systolic pressure-volume relationship in left ventricle. Mann CK; Lee LC; Campbell KS; Wenk JF Biomech Model Mechanobiol; 2020 Dec; 19(6):2683-2692. PubMed ID: 32346808 [TBL] [Abstract][Full Text] [Related]
19. Mechanical restitution and post extrasystolic potentiation of perfused rat heart: quantitative comparison of normal right and left ventricular responses. Mesaeli N; Juggi JS Can J Cardiol; 1992 Mar; 8(2):164-72. PubMed ID: 1373104 [TBL] [Abstract][Full Text] [Related]
20. A new integrated method for analyzing heart mechanics using a cell-hemodynamics-autonomic nerve control coupled model of the cardiovascular system. Shim EB; Jun HM; Leem CH; Matusuoka S; Noma A Prog Biophys Mol Biol; 2008; 96(1-3):44-59. PubMed ID: 17904205 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]