These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 22921613)

  • 41. Stretch-induced voltage changes in the isolated beating heart: importance of the timing of stretch and implications for stretch-activated ion channels.
    Zabel M; Koller BS; Sachs F; Franz MR
    Cardiovasc Res; 1996 Jul; 32(1):120-30. PubMed ID: 8776409
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multi-scale approaches for the simulation of cardiac electrophysiology: I - Sub-cellular and stochastic calcium dynamics from cell to organ.
    Colman MA; Holmes M; Whittaker DG; Jayasinghe I; Benson AP
    Methods; 2021 Jan; 185():49-59. PubMed ID: 32126258
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Enabling computer models of the heart for high-performance computers and the grid.
    Pitt-Francis J; Garny A; Gavaghan D
    Philos Trans A Math Phys Eng Sci; 2006 Jun; 364(1843):1501-16. PubMed ID: 16766357
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Calcium kinetic and mechanical regulation of the cardiac muscle.
    Landesberg A; Sideman S
    Adv Exp Med Biol; 1993; 346():59-77. PubMed ID: 8184782
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The role of the Frank-Starling law in the transduction of cellular work to whole organ pump function: a computational modeling analysis.
    Niederer SA; Smith NP
    PLoS Comput Biol; 2009 Apr; 5(4):e1000371. PubMed ID: 19390615
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Mechano-electric feedback effects in a three-dimensional (3D) model of the contracting cardiac ventricle.
    Amar A; Zlochiver S; Barnea O
    PLoS One; 2018; 13(1):e0191238. PubMed ID: 29342222
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Interrelating of ventricular pressure and intracellular calcium in intact hearts.
    Baran D; Ogino K; Stennett R; Schnellbacher M; Zwas D; Morgan JP; Burkhoff D
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1509-22. PubMed ID: 9321844
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Integrating multi-scale knowledge on cardiac development into a computational model of ventricular trabeculation.
    de Boer BA; Le Garrec JF; Christoffels VM; Meilhac SM; Ruijter JM
    Wiley Interdiscip Rev Syst Biol Med; 2014; 6(6):389-97. PubMed ID: 25286050
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Evaluation of the strain-line patterns in a human left ventricle: a simulation study.
    Gabriele S; Nardinocchi P; Varano V
    Comput Methods Biomech Biomed Engin; 2015; 18(7):790-8. PubMed ID: 24156641
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Stimulus-effect relations for left ventricular growth obtained with a simple multi-scale model: the influence of hemodynamic feedback.
    Rondanina E; Bovendeerd PHM
    Biomech Model Mechanobiol; 2020 Dec; 19(6):2111-2126. PubMed ID: 32358671
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Uncertainty quantification of 2 models of cardiac electromechanics.
    Hurtado DE; Castro S; Madrid P
    Int J Numer Method Biomed Eng; 2017 Dec; 33(12):. PubMed ID: 28474497
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Modeling cardiac electromechanics and mechanoelectrical coupling in dyssynchronous and failing hearts: insight from adaptive computer models.
    Kuijpers NH; Hermeling E; Bovendeerd PH; Delhaas T; Prinzen FW
    J Cardiovasc Transl Res; 2012 Apr; 5(2):159-69. PubMed ID: 22271009
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Multiscale model of the human cardiovascular system: Description of heart failure and comparison of contractility indices.
    Kosta S; Negroni J; Lascano E; Dauby PC
    Math Biosci; 2017 Feb; 284():71-79. PubMed ID: 27283921
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Functionally and structurally integrated computational modeling of ventricular physiology.
    McCulloch AD
    Jpn J Physiol; 2004 Dec; 54(6):531-9. PubMed ID: 15760485
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functions of stretch activation in heart muscle.
    Campbell KB; Chandra M
    J Gen Physiol; 2006 Feb; 127(2):89-94. PubMed ID: 16446501
    [No Abstract]   [Full Text] [Related]  

  • 56. Multi-scale approaches for the simulation of cardiac electrophysiology: II - Tissue-level structure and function.
    Benson AP; Stevenson-Cocks HJ; Whittaker DG; White E; Colman MA
    Methods; 2021 Jan; 185():60-81. PubMed ID: 31988002
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cellular mechanism of the relationship between myocardial force and frequency of contractions.
    Lewartowski B; Pytkowski B
    Prog Biophys Mol Biol; 1987; 50(2):97-120. PubMed ID: 3331452
    [No Abstract]   [Full Text] [Related]  

  • 58. Modeling force development in the sarcomere in consideration of electromechanical coupling.
    Glänzel K; Sachse FB; Seemann G; Riedel C; Dössel O
    Biomed Tech (Berl); 2002; 47 Suppl 1 Pt 2():774-7. PubMed ID: 12465300
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Quantitative study of the effect of tissue microstructure on contraction in a computational model of rat left ventricle.
    Carapella V; Bordas R; Pathmanathan P; Lohezic M; Schneider JE; Kohl P; Burrage K; Grau V
    PLoS One; 2014; 9(4):e92792. PubMed ID: 24695115
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Multi-Scale Computational Model for the Rat Ventricle: Construction, Parallelization, and Applications.
    Bi X; Zhang S; Jiang H; Wei Z
    Comput Methods Programs Biomed; 2021 Sep; 208():106289. PubMed ID: 34303152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.