BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 22921646)

  • 1. Photodecomposition of humic acid and natural organic matter in swamp water using a TiO(2)-coated ceramic foam filter: potential for the formation of disinfection byproducts.
    Mori M; Sugita T; Mase A; Funatogawa T; Kikuchi M; Aizawa K; Kato S; Saito Y; Ito T; Itabashi H
    Chemosphere; 2013 Jan; 90(4):1359-65. PubMed ID: 22921646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of natural organic matter in conventional water treatment processes for selection of treatment processes focused on DBPs control.
    Kim HC; Yu MJ
    Water Res; 2005 Nov; 39(19):4779-89. PubMed ID: 16253305
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Bioanalytical and chemical assessment of the disinfection by-product formation potential: role of organic matter.
    Farré MJ; Day S; Neale PA; Stalter D; Tang JY; Escher BI
    Water Res; 2013 Sep; 47(14):5409-21. PubMed ID: 23866154
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disinfection byproduct formation in reverse-osmosis concentrated and lyophilized natural organic matter from a drinking water source.
    Pressman JG; McCurry DL; Parvez S; Rice GE; Teuschler LK; Miltner RJ; Speth TF
    Water Res; 2012 Oct; 46(16):5343-54. PubMed ID: 22846256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation of N-nitrosamines from chlorination and chloramination of molecular weight fractions of natural organic matter.
    Kristiana I; Tan J; Joll CA; Heitz A; von Gunten U; Charrois JW
    Water Res; 2013 Feb; 47(2):535-46. PubMed ID: 23164216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation of DBPs' precursors in river water before and after slow sand filtration by photo-Fenton process at pH 5 in a solar CPC reactor.
    Moncayo-Lasso A; Pulgarin C; Benítez N
    Water Res; 2008 Sep; 42(15):4125-32. PubMed ID: 18718626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparing three Australian natural organic matter isolates to the Suwannee river standard: Reactivity, disinfection by-product yield, and removal by drinking water treatments.
    Watson K; Farré MJ; Knight N
    Sci Total Environ; 2019 Oct; 685():380-391. PubMed ID: 31176223
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Treatment of disinfection by-product precursors.
    Bond T; Goslan EH; Parsons SA; Jefferson B
    Environ Technol; 2011 Jan; 32(1-2):1-25. PubMed ID: 21473265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formation and decomposition of new and unknown polar brominated disinfection byproducts during chlorination.
    Zhai H; Zhang X
    Environ Sci Technol; 2011 Mar; 45(6):2194-201. PubMed ID: 21323365
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of aquatic humic substances to DBPs formation in advanced treatment processes for conventionally treated water.
    Kim HC; Yu MJ
    J Hazard Mater; 2007 May; 143(1-2):486-93. PubMed ID: 17092645
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparison of byproduct formation in waters treated with chlorine and iodine: relevance to point-of-use treatment.
    Smith EM; Plewa MJ; Lindell CL; Richardson SD; Mitch WA
    Environ Sci Technol; 2010 Nov; 44(22):8446-52. PubMed ID: 20964286
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Formation of known and unknown disinfection by-products from natural organic matter fractions during chlorination, chloramination, and ozonation.
    Li C; Wang D; Xu X; Wang Z
    Sci Total Environ; 2017 Jun; 587-588():177-184. PubMed ID: 28238434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization, DBPs formation, and mutagenicity of different organic matter fractions in two source waters.
    Fan Z; Gong S; Xu X; Zhang X; Zhang Y; Yu X
    Int J Hyg Environ Health; 2014 Mar; 217(2-3):300-6. PubMed ID: 23896129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of excitation-emission fluorescence matrices and UV/Vis absorption to monitoring the photocatalytic degradation of commercial humic acid.
    Valencia S; Marín JM; Restrepo G; Frimmel FH
    Sci Total Environ; 2013 Jan; 442():207-14. PubMed ID: 23178828
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Degradation of organics and formation of DBPs in the combined LED-UV and chlorine processes: Effects of water matrix and fluorescence analysis.
    Chen Y; Jafari I; Zhong Y; Chee MJ; Hu J
    Sci Total Environ; 2022 Nov; 846():157454. PubMed ID: 35868393
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A comprehensive appraisal on status and management of remediation of DBPs by TiO
    Sinha R; Ghosal PS
    J Environ Manage; 2023 Feb; 328():117011. PubMed ID: 36525732
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Selective removal of dissolved organic matter affects the production and speciation of disinfection byproducts.
    Williams CJ; Conrad D; Kothawala DN; Baulch HM
    Sci Total Environ; 2019 Feb; 652():75-84. PubMed ID: 30359804
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The removal of disinfection by-product precursors from water with ceramic membranes.
    Harman BI; Koseoglu H; Yigit NO; Sayilgan E; Beyhan M; Kitis M
    Water Sci Technol; 2010; 62(3):547-55. PubMed ID: 20706002
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developing LED UV fluorescence sensors for online monitoring DOM and predicting DBPs formation potential during water treatment.
    Li WT; Jin J; Li Q; Wu CF; Lu H; Zhou Q; Li AM
    Water Res; 2016 Apr; 93():1-9. PubMed ID: 26874469
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Formation and interdependence of disinfection byproducts during chlorination of natural organic matter in a conventional drinking water treatment plant.
    Zhang X; Chen Z; Shen J; Zhao S; Kang J; Chu W; Zhou Y; Wang B
    Chemosphere; 2020 Mar; 242():125227. PubMed ID: 31704522
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.