BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 22921654)

  • 1. Effects of simulated acid rain, EDTA, or their combination, on migration and chemical fraction distribution of extraneous metals in Ferrosol.
    Wen F; Hou H; Yao N; Yan Z; Bai L; Li F
    Chemosphere; 2013 Jan; 90(2):349-57. PubMed ID: 22921654
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functioning of metal contaminated garden soil after remediation.
    Jelusic M; Grcman H; Vodnik D; Suhadolc M; Lestan D
    Environ Pollut; 2013 Mar; 174():63-70. PubMed ID: 23246748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Leaching characteristics of EDTA-enhanced phytoextraction of Cd and Pb by Zea mays L. in different particle-size fractions of soil aggregates exposed to artificial rain.
    Lu Y; Luo D; Lai A; Liu G; Liu L; Long J; Zhang H; Chen Y
    Environ Sci Pollut Res Int; 2017 Jan; 24(2):1845-1853. PubMed ID: 27796994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influence of different organic amendments on the potential availability of metals from soil: a study on metal fractionation and extraction kinetics by EDTA.
    Santos S; Costa CA; Duarte AC; Scherer HW; Schneider RJ; Esteves VI; Santos EB
    Chemosphere; 2010 Jan; 78(4):389-96. PubMed ID: 19962175
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Migration of Ag, In, Sn, Sb, and Bi and Their Chemical Forms in a Monolith Lysimeter Filled with a Contaminated Andosol.
    Murata T; Koshikawa MK; Watanabe M; Hou H; Takamatsu T
    Arch Environ Contam Toxicol; 2018 Jan; 74(1):154-169. PubMed ID: 28791460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic characterizing of soil trace metal availability using Soil/EDTA/Chelex mixture.
    Manouchehri N; Besançon S; Bermond A
    Chemosphere; 2011 May; 83(7):997-1004. PubMed ID: 21377711
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The two-phase leaching of Pb, Zn and Cd contaminated soil using EDTA and electrochemical treatment of the washing solution.
    Finzgar N; Lestan D
    Chemosphere; 2008 Nov; 73(9):1484-91. PubMed ID: 18762318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The EDTA effect on phytoextraction of single and combined metals-contaminated soils using rainbow pink (Dianthus chinensis).
    Lai HY; Chen ZS
    Chemosphere; 2005 Aug; 60(8):1062-71. PubMed ID: 15993153
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Migration and leaching risk of extraneous antimony in three representative soils of China: lysimeter and batch experiments.
    Hou H; Yao N; Li JN; Wei Y; Zhao L; Zhang J; Li FS
    Chemosphere; 2013 Nov; 93(9):1980-8. PubMed ID: 23931906
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EDTA and HCl leaching of calcareous and acidic soils polluted with potentially toxic metals: remediation efficiency and soil impact.
    Udovic M; Lestan D
    Chemosphere; 2012 Jul; 88(6):718-24. PubMed ID: 22591846
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of EDTA washing of metal polluted garden soils. Part I: Toxicity hazards and impact on soil properties.
    Jelusic M; Lestan D
    Sci Total Environ; 2014 Mar; 475():132-41. PubMed ID: 24315027
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle-facilitated lead and arsenic transport in abandoned mine sites soil influenced by simulated acid rain.
    Shaoping H; Xincai C; Jiyan S; Yingxu C; Qi L
    Chemosphere; 2008 May; 71(11):2091-7. PubMed ID: 18329689
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Influence of EDTA washing on the species and mobility of heavy metals residual in soils.
    Zhang W; Huang H; Tan F; Wang H; Qiu R
    J Hazard Mater; 2010 Jan; 173(1-3):369-76. PubMed ID: 19748734
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The use of NTA for lead phytoextraction from soil from a battery recycling site.
    Freitas EV; do Nascimento CW
    J Hazard Mater; 2009 Nov; 171(1-3):833-7. PubMed ID: 19595509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced phytoextraction: I. Effect of EDTA and citric acid on heavy metal mobility in a calcareous soil.
    Meers E; Lesage E; Lamsal S; Hopgood M; Vervaeke P; Tack FM; Verloo MG
    Int J Phytoremediation; 2005; 7(2):129-42. PubMed ID: 16128444
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Slow release chelate enhancement of lead phytoextraction by corn (Zea mays L.) from contaminated soil--a preliminary study.
    Li H; Wang Q; Cui Y; Dong Y; Christie P
    Sci Total Environ; 2005 Mar; 339(1-3):179-87. PubMed ID: 15740768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy metals mobilization from harbour sediments using EDTA and citric acid as chelating agents.
    Di Palma L; Mecozzi R
    J Hazard Mater; 2007 Aug; 147(3):768-75. PubMed ID: 17321047
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of EDTA- and citric acid-enhanced phytoextraction of heavy metals in artificially metal contaminated soil by Typha angustifolia.
    Muhammad D; Chen F; Zhao J; Zhang G; Wu F
    Int J Phytoremediation; 2009 Aug; 11(6):558-74. PubMed ID: 19810355
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of phosphate application on the mobility of antimony in firing range soils.
    Griggs CS; Martin WA; Larson SL; O'Connnor G; Fabian G; Zynda G; Mackie D
    Sci Total Environ; 2011 May; 409(12):2397-403. PubMed ID: 21440928
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of earthworms on the fractionation, mobility and bioavailability of Pb, Zn and Cd before and after soil leaching with EDTA.
    Udovic M; Plavc Z; Lestan D
    Chemosphere; 2007 Nov; 70(1):126-34. PubMed ID: 17675216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.