These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 22921673)

  • 1. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutics targets for tyrosine kinase inhibitors.
    Brandi G; Tavolari S; Biasco G
    Gastroenterology; 2012 Oct; 143(4):e20-1; author reply e21. PubMed ID: 22921673
    [No Abstract]   [Full Text] [Related]  

  • 2. Genomic and genetic characterization of cholangiocarcinoma identifies therapeutic targets for tyrosine kinase inhibitors.
    Andersen JB; Spee B; Blechacz BR; Avital I; Komuta M; Barbour A; Conner EA; Gillen MC; Roskams T; Roberts LR; Factor VM; Thorgeirsson SS
    Gastroenterology; 2012 Apr; 142(4):1021-1031.e15. PubMed ID: 22178589
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fibroblast growth factor receptor 2 translocations in intrahepatic cholangiocarcinoma.
    Graham RP; Barr Fritcher EG; Pestova E; Schulz J; Sitailo LA; Vasmatzis G; Murphy SJ; McWilliams RR; Hart SN; Halling KC; Roberts LR; Gores GJ; Couch FJ; Zhang L; Borad MJ; Kipp BR
    Hum Pathol; 2014 Aug; 45(8):1630-8. PubMed ID: 24837095
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combination therapies for targeting FGFR2 fusions in cholangiocarcinoma.
    Saborowski A; Vogel A; Segatto O
    Trends Cancer; 2022 Feb; 8(2):83-86. PubMed ID: 34840108
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular aspects of cholangiocarcinoma.
    Kiguchi K
    J Hepatobiliary Pancreat Sci; 2014 Jun; 21(6):371-9. PubMed ID: 24420749
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PTPN3 mutations and HBV may exert synergistic effects in the origin of the intrahepatic cholangiocarcinoma.
    Cardinale V; Alvaro D
    Gastroenterology; 2014 Sep; 147(3):719-20. PubMed ID: 25075940
    [No Abstract]   [Full Text] [Related]  

  • 7. Overlapping signature genes between hepatocellular carcinoma and intrahepatic cholangiocarcinoma.
    Chen F; Li S; Castranova V
    Eur J Gastroenterol Hepatol; 2009 Nov; 21(11):1320-1. PubMed ID: 19826380
    [No Abstract]   [Full Text] [Related]  

  • 8. Dissecting the genetic susceptibility for cholangiocarcinoma in primary sclerosing cholangitis.
    Lazaridis KN
    Hepatology; 2008 Jan; 47(1):8-10. PubMed ID: 18161699
    [No Abstract]   [Full Text] [Related]  

  • 9. Mutations in bile salt export pump (ABCB11) in two children with progressive familial intrahepatic cholestasis and cholangiocarcinoma.
    Scheimann AO; Strautnieks SS; Knisely AS; Byrne JA; Thompson RJ; Finegold MJ
    J Pediatr; 2007 May; 150(5):556-9. PubMed ID: 17452236
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A gastrointestinal stromal tumor of the jejunum associated with intrahepatic cholangiocarcinoma and pulmonary hamartoma: a case report.
    Lao XM; Ye ZY; Guo RP; Guo ZX; Wang GH; Li JQ; Zhang YQ
    Acta Oncol; 2009; 48(6):934-7. PubMed ID: 19241185
    [No Abstract]   [Full Text] [Related]  

  • 11. Gene expression-based chemical genomics identifies heat-shock protein 90 inhibitors as potential therapeutic drugs in cholangiocarcinoma.
    Chen MH; Lin KJ; Yang WL; Kao YW; Chen TW; Chao SC; Chang PM; Liu CY; Tzeng CH; Chao Y; Chen MH; Yeh CN; Huang CY
    Cancer; 2013 Jan; 119(2):293-303. PubMed ID: 22810956
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cholangiocarcinoma.
    Krasinskas AM
    Surg Pathol Clin; 2018 Jun; 11(2):403-429. PubMed ID: 29751883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chromosomal imbalances in Korean intrahepatic cholangiocarcinoma by comparative genomic hybridization.
    Uhm KO; Park YN; Lee JY; Yoon DS; Park SH
    Cancer Genet Cytogenet; 2005 Feb; 157(1):37-41. PubMed ID: 15676145
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fibroblast growth factor receptor 2: a new potential therapeutic target for human cancer.
    Cheng C; Hu W; Liu LP; Li J
    Hum Pathol; 2015 Feb; 46(2):339-40. PubMed ID: 25466307
    [No Abstract]   [Full Text] [Related]  

  • 15. Primary bile duct carcinoma in histocompatibility antigen-identical twins.
    Christophi C; Nikfarjam M; Muralidharan V; Dudley F
    J Gastroenterol Hepatol; 2003 Apr; 18(4):469-72. PubMed ID: 12653905
    [No Abstract]   [Full Text] [Related]  

  • 16. p53 Mutations in human cholangiocarcinoma: a review.
    Khan SA; Thomas HC; Toledano MB; Cox IJ; Taylor-Robinson SD
    Liver Int; 2005 Aug; 25(4):704-16. PubMed ID: 15998419
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ABCB4/MDR3 gene mutations and cholangiocarcinomas.
    Tougeron D; Fotsing G; Barbu V; Beauchant M
    J Hepatol; 2012 Aug; 57(2):467-8. PubMed ID: 22387667
    [No Abstract]   [Full Text] [Related]  

  • 18. KRAS mutation in biliary tract cholangiocarcinoma.
    Yasri S; Wiwanitkit V
    J Formos Med Assoc; 2017 Mar; 116(3):214. PubMed ID: 28007466
    [No Abstract]   [Full Text] [Related]  

  • 19. Role of epigenetic alterations in cholangiocarcinoma.
    Tischoff I; Wittekind C; Tannapfel A
    J Hepatobiliary Pancreat Surg; 2006; 13(4):274-9. PubMed ID: 16858537
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Highlights of topic "Biochemical and molecular pathological aspects of cholangiocarcinoma".
    Murakami Y
    J Hepatobiliary Pancreat Sci; 2014 Jun; 21(6):359-61. PubMed ID: 24840727
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 6.