These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 22921839)

  • 21. Drug solubility in fatty acids as a formulation design approach for lipid-based formulations: a technical note.
    Lee YC; Dalton C; Regler B; Harris D
    Drug Dev Ind Pharm; 2018 Sep; 44(9):1551-1556. PubMed ID: 29873584
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving oral absorption via drug-loaded nanocarriers: absorption mechanisms, intestinal models and rational fabrication.
    Shahbazi MA; Santos HA
    Curr Drug Metab; 2013 Jan; 14(1):28-56. PubMed ID: 22497568
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lipid-based delivery systems and intestinal lymphatic drug transport: a mechanistic update.
    Trevaskis NL; Charman WN; Porter CJ
    Adv Drug Deliv Rev; 2008 Mar; 60(6):702-16. PubMed ID: 18155316
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Nanocarrier systems for oral drug delivery: do we really need them?
    Bernkop-Schnürch A
    Eur J Pharm Sci; 2013 May; 49(2):272-7. PubMed ID: 23537503
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in lipid nanoparticle formulations with solid matrix for oral drug delivery.
    Das S; Chaudhury A
    AAPS PharmSciTech; 2011 Mar; 12(1):62-76. PubMed ID: 21174180
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Denatured globular protein and bile salt-coated nanoparticles for poorly water-soluble drugs: Penetration across the intestinal epithelial barrier into the circulation system and enhanced oral bioavailability.
    He W; Yang K; Fan L; Lv Y; Jin Z; Zhu S; Qin C; Wang Y; Yin L
    Int J Pharm; 2015 Nov; 495(1):9-18. PubMed ID: 26325310
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Lipophilic peptide character - What oral barriers fear the most.
    Zupančič O; Bernkop-Schnürch A
    J Control Release; 2017 Jun; 255():242-257. PubMed ID: 28457894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Interplay of metabolism and transport in determining oral drug absorption and gut wall metabolism: a simulation assessment using the "Advanced Dissolution, Absorption, Metabolism (ADAM)" model.
    Darwich AS; Neuhoff S; Jamei M; Rostami-Hodjegan A
    Curr Drug Metab; 2010 Nov; 11(9):716-29. PubMed ID: 21189140
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhancement of nasal and intestinal calcitonin delivery by the novel Pheroid fatty acid based delivery system, and by N-trimethyl chitosan chloride.
    du Plessis LH; Lubbe J; Strauss T; Kotzé AF
    Int J Pharm; 2010 Jan; 385(1-2):181-6. PubMed ID: 19854253
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of particulate drug delivery systems for oral delivery of Peptide and protein drugs.
    Christophersen PC; Fano M; Saaby L; Yang M; Nielsen HM; Mu H
    Curr Pharm Des; 2015; 21(19):2611-28. PubMed ID: 25876916
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lymphatic transport of halofantrine in the conscious rat when administered as either the free base or the hydrochloride salt: effect of lipid class and lipid vehicle dispersion.
    Porter CJ; Charman SA; Humberstone AJ; Charman WN
    J Pharm Sci; 1996 Apr; 85(4):357-61. PubMed ID: 8901068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modeling the influence of cyclodextrins on oral absorption of low-solubility drugs: I. Model development.
    Gamsiz ED; Miller L; Thombre AG; Ahmed I; Carrier RL
    Biotechnol Bioeng; 2010 Feb; 105(2):409-20. PubMed ID: 19725042
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Intestinal lymph lipoproteins in rats fed diets enriched in specific fatty acids.
    Feldman EB; Russell BS; Hawkins CB; Forte T
    J Nutr; 1983 Nov; 113(11):2323-34. PubMed ID: 6631549
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipids and lipid-based formulations: optimizing the oral delivery of lipophilic drugs.
    Porter CJ; Trevaskis NL; Charman WN
    Nat Rev Drug Discov; 2007 Mar; 6(3):231-48. PubMed ID: 17330072
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanocarriers for oral drug delivery.
    Zhang L; Wang S; Zhang M; Sun J
    J Drug Target; 2013 Jul; 21(6):515-27. PubMed ID: 23621127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Lipophilic Conjugates of Drugs: A Tool to Improve Drug Pharmacokinetic and Therapeutic Profiles.
    Han S; Mei L; Quach T; Porter C; Trevaskis N
    Pharm Res; 2021 Sep; 38(9):1497-1518. PubMed ID: 34463935
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Phytantriol and glyceryl monooleate cubic liquid crystalline phases as sustained-release oral drug delivery systems for poorly water-soluble drugs II. In-vivo evaluation.
    Nguyen TH; Hanley T; Porter CJ; Larson I; Boyd BJ
    J Pharm Pharmacol; 2010 Jul; 62(7):856-65. PubMed ID: 20636873
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solid lipid nanoparticles: promising therapeutic nanocarriers for drug delivery.
    Thukral DK; Dumoga S; Mishra AK
    Curr Drug Deliv; 2014; 11(6):771-91. PubMed ID: 25469779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Polymeric nanoparticles for oral delivery of drugs and vaccines: a critical evaluation of in vivo studies.
    Galindo-Rodriguez SA; Allemann E; Fessi H; Doelker E
    Crit Rev Ther Drug Carrier Syst; 2005; 22(5):419-64. PubMed ID: 16313233
    [TBL] [Abstract][Full Text] [Related]  

  • 40. In-vitro/in-vivo characterization of trans-resveratrol-loaded nanoparticulate drug delivery system for oral administration.
    Singh G; Pai RS
    J Pharm Pharmacol; 2014 Aug; 66(8):1062-76. PubMed ID: 24779896
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.