These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 22922003)

  • 41. Enhancing anaerobic digestibility and phosphorus recovery of dairy manure through microwave-based thermochemical pretreatment.
    Jin Y; Hu Z; Wen Z
    Water Res; 2009 Aug; 43(14):3493-502. PubMed ID: 19555991
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Potential phosphorus recovery by struvite formation.
    Jaffer Y; Clark TA; Pearce P; Parsons SA
    Water Res; 2002 Apr; 36(7):1834-42. PubMed ID: 12044083
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Long-term effect of low concentration Cr(VI) on P removal in granule-based enhanced biological phosphorus removal (EBPR) system.
    Fang J; Su B; Sun P; Lou J; Han J
    Chemosphere; 2015 Feb; 121():76-83. PubMed ID: 25479809
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Struvite formation, control and recovery.
    Doyle JD; Parsons SA
    Water Res; 2002 Sep; 36(16):3925-40. PubMed ID: 12405401
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phosphorus recycling in sewage treatment plants with biological phosphorus removal.
    Heinzmann B
    Water Sci Technol; 2005; 52(10-11):543-8. PubMed ID: 16459832
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phosphates (V) recovery from phosphorus mineral fertilizers industry wastewater by continuous struvite reaction crystallization process.
    Hutnik N; Kozik A; Mazienczuk A; Piotrowski K; Wierzbowska B; Matynia A
    Water Res; 2013 Jul; 47(11):3635-43. PubMed ID: 23726699
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Methanol-driven enhanced biological phosphorus removal with a syntrophic consortium.
    Tayà C; Guerrero J; Vanneste G; Guisasola A; Baeza JA
    Biotechnol Bioeng; 2013 Feb; 110(2):391-400. PubMed ID: 22886528
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Recovery and removal of nutrients from swine wastewater by using a novel integrated reactor for struvite decomposition and recycling.
    Huang H; Xiao D; Liu J; Hou L; Ding L
    Sci Rep; 2015 May; 5():10183. PubMed ID: 25960246
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Research advances and challenges in the microbiology of enhanced biological phosphorus removal--a critical review.
    Gebremariam SY; Beutel MW; Christian D; Hess TF
    Water Environ Res; 2011 Mar; 83(3):195-219. PubMed ID: 21466069
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Phosphorus removal from anaerobically digested swine wastewater through struvite precipitation.
    Jordaan EM; Ackerman J; Cicek N
    Water Sci Technol; 2010; 61(12):3228-34. PubMed ID: 20555221
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Low acetate concentrations favor polyphosphate-accumulating organisms over glycogen-accumulating organisms in enhanced biological phosphorus removal from wastewater.
    Tu Y; Schuler AJ
    Environ Sci Technol; 2013 Apr; 47(8):3816-24. PubMed ID: 23477409
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Removal of ammonium from rare-earth wastewater using natural brucite as a magnesium source of struvite precipitation.
    Huang HM; Xiao XM; Yang LP; Yan B
    Water Sci Technol; 2011; 63(3):468-74. PubMed ID: 21278469
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Auto-nucleation and crystal growth of struvite in a demonstrative fluidized bed reactor (FBR).
    Battistoni P; Boccadoro R; Fatone F; Pavan P
    Environ Technol; 2005 Sep; 26(9):975-82. PubMed ID: 16196406
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Recovering phosphorus as struvite from the digested swine wastewater with bittern as a magnesium source.
    Ye ZL; Chen SH; Lu M; Shi JW; Lin LF; Wang SM
    Water Sci Technol; 2011; 64(2):334-40. PubMed ID: 22097004
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Functionally relevant microorganisms to enhanced biological phosphorus removal performance at full-scale wastewater treatment plants in the United States.
    Gu AZ; Saunders A; Neethling JB; Stensel HD; Blackall LL
    Water Environ Res; 2008 Aug; 80(8):688-98. PubMed ID: 18751532
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The impact of operational strategies on the performance of a photo-EBPR system.
    Carvalho VCF; Freitas EB; Silva PJ; Fradinho JC; Reis MAM; Oehmen A
    Water Res; 2018 Feb; 129():190-198. PubMed ID: 29149674
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Living on the edge: Prospects for enhanced biological phosphorus removal at low sludge retention time under different temperature scenarios.
    Chan C; Guisasola A; Baeza JA
    Chemosphere; 2020 Nov; 258():127230. PubMed ID: 32535439
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Biological phosphorus removal from abattoir wastewater at very short sludge ages mediated by novel PAO clade Comamonadaceae.
    Ge H; Batstone DJ; Keller J
    Water Res; 2015 Feb; 69():173-182. PubMed ID: 25481076
    [TBL] [Abstract][Full Text] [Related]  

  • 59. The effect of COD loading on the granule-based enhanced biological phosphorus removal system and the recoverability.
    Yu S; Sun P; Zheng W; Chen L; Zheng X; Han J; Yan T
    Bioresour Technol; 2014 Nov; 171():80-7. PubMed ID: 25189512
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Struvite crystallization versus amorphous magnesium and calcium phosphate precipitation during the treatment of a saline industrial wastewater.
    Crutchik D; Garrido JM
    Water Sci Technol; 2011; 64(12):2460-7. PubMed ID: 22170842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.