These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 22922062)

  • 1. A comparative analysis of models of Na+ channel gating for mammalian and invertebrate nonmyelinated axons: relationship to energy efficient action potentials.
    Clay JR
    Prog Biophys Mol Biol; 2013 Jan; 111(1):1-7. PubMed ID: 22922062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optimum ion channel properties in the squid giant axon.
    Adair RK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Apr; 69(4 Pt 1):042902. PubMed ID: 15169052
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mathematical simulations of the effects of altered AMP-kinase activity on I and the action potential in rat ventricle.
    Bazzazi H; Clark RB; Giles WR
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S162-S168. PubMed ID: 16686674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Voltage gating by molecular subunits of Na+ and K+ ion channels: higher-dimensional cubic kinetics, rate constants, and temperature.
    Fohlmeister JF
    J Neurophysiol; 2015 Jun; 113(10):3759-77. PubMed ID: 25867741
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature dependence of bistability in squid giant axons with alkaline intracellular pH.
    Clay JR; Shrier A
    J Membr Biol; 2002 Jun; 187(3):213-23. PubMed ID: 12163979
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Current- and voltage-clamp recordings and computer simulations of Kenyon cells in the honeybee.
    Wüstenberg DG; Boytcheva M; Grünewald B; Byrne JH; Menzel R; Baxter DA
    J Neurophysiol; 2004 Oct; 92(4):2589-603. PubMed ID: 15190098
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simulation in sensory neurons reveals a key role for delayed Na+ current in subthreshold oscillations and ectopic discharge: implications for neuropathic pain.
    Kovalsky Y; Amir R; Devor M
    J Neurophysiol; 2009 Sep; 102(3):1430-42. PubMed ID: 19571204
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Periodicity in Na(+) channel properties alters excitability of a model neuron.
    Majumdar S; Sikdar SK
    Biochem Biophys Res Commun; 2007 Aug; 359(4):908-14. PubMed ID: 17562325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Voltage-gated Na+ current availability after step- and spike-shaped conditioning depolarizations of retinal ganglion cells.
    Hidaka S; Ishida AT
    Pflugers Arch; 1998 Jul; 436(4):497-508. PubMed ID: 9683721
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Axonal excitability revisited.
    Clay JR
    Prog Biophys Mol Biol; 2005 May; 88(1):59-90. PubMed ID: 15561301
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the persistent sodium current in squid giant axons.
    Clay JR
    J Neurophysiol; 2003 Jan; 89(1):640-4. PubMed ID: 12522209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Peptidergic counter-regulation of Ca(2+)- and Na(+)-dependent K(+) currents modulates the shape of action potentials in neurosecretory insect neurons.
    Wicher D; Berlau J; Walther C; Borst A
    J Neurophysiol; 2006 Jan; 95(1):311-22. PubMed ID: 16177173
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stochastic simulations on the reliability of action potential propagation in thin axons.
    Faisal AA; Laughlin SB
    PLoS Comput Biol; 2007 May; 3(5):e79. PubMed ID: 17480115
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium currents activate without a Hodgkin-and-Huxley-type delay in central mammalian neurons.
    Baranauskas G; Martina M
    J Neurosci; 2006 Jan; 26(2):671-84. PubMed ID: 16407565
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biophysical mechanism of spike threshold dependence on the rate of rise of the membrane potential by sodium channel inactivation or subthreshold axonal potassium current.
    Wester JC; Contreras D
    J Comput Neurosci; 2013 Aug; 35(1):1-17. PubMed ID: 23344915
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sodium channel slow inactivation and the distribution of sodium channels on skeletal muscle fibres enable the performance properties of different skeletal muscle fibre types.
    Ruff RL
    Acta Physiol Scand; 1996 Mar; 156(3):159-68. PubMed ID: 8729676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analytical solutions of the Frankenhaeuser-Huxley equations I: minimal model for backpropagation of action potentials in sparsely excitable dendrites.
    Poznanski RR
    J Integr Neurosci; 2004 Sep; 3(3):267-99. PubMed ID: 15366097
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of the optimal channel density of the squid giant axon using a reparameterized Hodgkin-Huxley model.
    Sangrey TD; Friesen WO; Levy WB
    J Neurophysiol; 2004 Jun; 91(6):2541-50. PubMed ID: 14749318
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrophysiological properties of two axonal sodium channels, Nav1.2 and Nav1.6, expressed in mouse spinal sensory neurones.
    Rush AM; Dib-Hajj SD; Waxman SG
    J Physiol; 2005 May; 564(Pt 3):803-15. PubMed ID: 15760941
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ATX-II effects on the apparent location of M cells in a computational model of a human left ventricular wedge.
    Dos Santos RW; Otaviano Campos F; Neumann Ciuffo L; Nygren A; Giles W; Koch H
    J Cardiovasc Electrophysiol; 2006 May; 17 Suppl 1():S86-S95. PubMed ID: 16686688
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.