These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 22922096)
1. Definition and evaluation of testing scenarios for knee wear simulation under conditions of highly demanding daily activities. Schwiesau J; Schilling C; Kaddick C; Utzschneider S; Jansson V; Fritz B; Blömer W; Grupp TM Med Eng Phys; 2013 May; 35(5):591-600. PubMed ID: 22922096 [TBL] [Abstract][Full Text] [Related]
2. A new protocol for wear testing of total knee prostheses from real joint kinematic data: Towards a scenario of realistic simulations of daily living activities. Abdel-Jaber S; Belvedere C; Mattia JS; Leardini A; Affatato S J Biomech; 2016 Sep; 49(13):2925-2931. PubMed ID: 27451058 [TBL] [Abstract][Full Text] [Related]
3. Biotribology of a mobile bearing posterior stabilised knee design--effect of motion restraint on wear, tibio-femoral kinematics and particles. Grupp TM; Schroeder C; Kyun Kim T; Miehlke RK; Fritz B; Jansson V; Utzschneider S J Biomech; 2014 Jul; 47(10):2415-23. PubMed ID: 24837220 [TBL] [Abstract][Full Text] [Related]
4. Validation of a new computational 6-DOF knee simulator during dynamic activities. Fitzpatrick CK; Maag C; Clary CW; Metcalfe A; Langhorn J; Rullkoetter PJ J Biomech; 2016 Oct; 49(14):3177-3184. PubMed ID: 27545078 [TBL] [Abstract][Full Text] [Related]
5. Wear simulation of total knee prostheses using load and kinematics waveforms from stair climbing. Abdel-Jaber S; Belvedere C; Leardini A; Affatato S J Biomech; 2015 Nov; 48(14):3830-6. PubMed ID: 26431754 [TBL] [Abstract][Full Text] [Related]
7. Knee wear simulation under conditions of highly demanding daily activities--influence on an unicompartmental fixed bearing knee design. Schwiesau J; Schilling C; Utzschneider S; Jansson V; Fritz B; Blömer W; Grupp TM Med Eng Phys; 2013 Aug; 35(8):1204-11. PubMed ID: 23380535 [TBL] [Abstract][Full Text] [Related]
8. A new protocol from real joint motion data for wear simulation in total knee arthroplasty: stair climbing. Battaglia S; Belvedere C; Jaber SA; Affatato S; D'Angeli V; Leardini A Med Eng Phys; 2014 Dec; 36(12):1605-10. PubMed ID: 25242732 [TBL] [Abstract][Full Text] [Related]
9. A comparison between electromechanical and pneumatic-controlled knee simulators for the investigation of wear of total knee replacements. Abdelgaied A; Fisher J; Jennings LM Proc Inst Mech Eng H; 2017 Jul; 231(7):643-651. PubMed ID: 28661228 [TBL] [Abstract][Full Text] [Related]
10. Understanding the differences in wear testing method standards for total knee replacement. Abdelgaied A; Fisher J; Jennings LM J Mech Behav Biomed Mater; 2022 Aug; 132():105258. PubMed ID: 35609424 [TBL] [Abstract][Full Text] [Related]
11. Investigation of wear of knee prostheses in a new displacement/force-controlled simulator. Barnett PI; McEwen HM; Auger DD; Stone MH; Ingham E; Fisher J Proc Inst Mech Eng H; 2002; 216(1):51-61. PubMed ID: 11908483 [TBL] [Abstract][Full Text] [Related]
12. Knee stability and graft function following anterior cruciate ligament reconstruction: Comparison between 11 o'clock and 10 o'clock femoral tunnel placement. 2002 Richard O'Connor Award paper. Loh JC; Fukuda Y; Tsuda E; Steadman RJ; Fu FH; Woo SL Arthroscopy; 2003 Mar; 19(3):297-304. PubMed ID: 12627155 [TBL] [Abstract][Full Text] [Related]
13. Effect of anterior-posterior and internal-external motion restraint during knee wear simulation on a posterior stabilised knee design. Grupp TM; Saleh KJ; Mihalko WM; Hintner M; Fritz B; Schilling C; Schwiesau J; Kaddick C J Biomech; 2013 Feb; 46(3):491-7. PubMed ID: 23159092 [TBL] [Abstract][Full Text] [Related]
14. A comprehensive combined experimental and computational framework for pre-clinical wear simulation of total knee replacements. Abdelgaied A; Fisher J; Jennings LM J Mech Behav Biomed Mater; 2018 Feb; 78():282-291. PubMed ID: 29195220 [TBL] [Abstract][Full Text] [Related]
15. The anterior cruciate ligament provides resistance to externally applied anterior tibial force but not to internal rotational torque during simulated weight-bearing flexion. Wünschel M; Müller O; Lo J; Obloh C; Wülker N Arthroscopy; 2010 Nov; 26(11):1520-7. PubMed ID: 20920837 [TBL] [Abstract][Full Text] [Related]
16. Tibio-femoral movement in the living knee. A study of weight bearing and non-weight bearing knee kinematics using 'interventional' MRI. Johal P; Williams A; Wragg P; Hunt D; Gedroyc W J Biomech; 2005 Feb; 38(2):269-76. PubMed ID: 15598453 [TBL] [Abstract][Full Text] [Related]
17. A new method of in vitro wear assessment of the UHMWPE tibial insert in total knee replacement. Affatato S; Cristofolini L; Leardini W; Erani P; Zavalloni M; Tigani D; Viceconti M Artif Organs; 2008 Dec; 32(12):942-8. PubMed ID: 19133022 [TBL] [Abstract][Full Text] [Related]
18. Enhanced In-Silico Polyethylene Wear Simulation of Total Knee Replacements During Daily Activities. Shu L; Hashimoto S; Sugita N Ann Biomed Eng; 2021 Jan; 49(1):322-333. PubMed ID: 32607843 [TBL] [Abstract][Full Text] [Related]
19. Vitamin E stabilised polyethylene for total knee arthroplasty evaluated under highly demanding activities wear simulation. Grupp TM; Fritz B; Kutzner I; Schilling C; Bergmann G; Schwiesau J Acta Biomater; 2017 Jan; 48():415-422. PubMed ID: 27789345 [TBL] [Abstract][Full Text] [Related]
20. Mobile or fixed unicompartmental knee prostheses? In-vitro wear assessments to solve this dilemma. Taddei P; Modena E; Grupp TM; Affatato S J Mech Behav Biomed Mater; 2011 Nov; 4(8):1936-46. PubMed ID: 22098892 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]