These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
363 related articles for article (PubMed ID: 22922107)
21. Photochemical properties in flag leaves of a super-high-yielding hybrid rice and a traditional hybrid rice (Oryza sativa L.) probed by chlorophyll a fluorescence transient. Zhang M; Shan Y; Kochian L; Strasser RJ; Chen G Photosynth Res; 2015 Dec; 126(2-3):275-84. PubMed ID: 25972274 [TBL] [Abstract][Full Text] [Related]
22. Differential changes in photosynthetic capacity, 77 K chlorophyll fluorescence and chloroplast ultrastructure between Zn-efficient and Zn-inefficient rice genotypes (Oryza sativa) under low zinc stress. Chen W; Yang X; He Z; Feng Y; Hu F Physiol Plant; 2008 Jan; 132(1):89-101. PubMed ID: 18251873 [TBL] [Abstract][Full Text] [Related]
23. Chlorophyll Composition, Chlorophyll Fluorescence, and Grain Yield Change in Lin W; Guo X; Pan X; Li Z Int J Mol Sci; 2018 Sep; 19(10):. PubMed ID: 30262721 [TBL] [Abstract][Full Text] [Related]
24. Light-Harvesting Complex Stress-Related Proteins Catalyze Excess Energy Dissipation in Both Photosystems of Physcomitrella patens. Pinnola A; Cazzaniga S; Alboresi A; Nevo R; Levin-Zaidman S; Reich Z; Bassi R Plant Cell; 2015 Nov; 27(11):3213-27. PubMed ID: 26508763 [TBL] [Abstract][Full Text] [Related]
25. CO2 response of cyclic electron flow around PSI (CEF-PSI) in tobacco leaves--relative electron fluxes through PSI and PSII determine the magnitude of non-photochemical quenching (NPQ) of Chl fluorescence. Miyake C; Miyata M; Shinzaki Y; Tomizawa K Plant Cell Physiol; 2005 Apr; 46(4):629-37. PubMed ID: 15701657 [TBL] [Abstract][Full Text] [Related]
27. Proteomic characterization of hierarchical megacomplex formation in Arabidopsis thylakoid membrane. Rantala M; Tikkanen M; Aro EM Plant J; 2017 Dec; 92(5):951-962. PubMed ID: 28980426 [TBL] [Abstract][Full Text] [Related]
28. The role of chlorophyll-protein complexes in the function and structure of chloroplast thylakoids. Anderson JM Mol Cell Biochem; 1982 Aug; 46(3):161-72. PubMed ID: 6750355 [TBL] [Abstract][Full Text] [Related]
29. Comparative Analysis of Light-Harvesting Antennae and State Transition in chlorina and cpSRP Mutants. Wang P; Grimm B Plant Physiol; 2016 Nov; 172(3):1519-1531. PubMed ID: 27663408 [TBL] [Abstract][Full Text] [Related]
30. Light acclimation in the lycophyte Selaginella martensii depends on changes in the amount of photosystems and on the flexibility of the light-harvesting complex II antenna association with both photosystems. Ferroni L; Suorsa M; Aro EM; Baldisserotto C; Pancaldi S New Phytol; 2016 Jul; 211(2):554-68. PubMed ID: 27058989 [TBL] [Abstract][Full Text] [Related]
31. Physiological functions of the water-water cycle (Mehler reaction) and the cyclic electron flow around PSI in rice leaves. Makino A; Miyake C; Yokota A Plant Cell Physiol; 2002 Sep; 43(9):1017-26. PubMed ID: 12354919 [TBL] [Abstract][Full Text] [Related]
32. The knockdown of chloroplastic ascorbate peroxidases reveals its regulatory role in the photosynthesis and protection under photo-oxidative stress in rice. Caverzan A; Bonifacio A; Carvalho FE; Andrade CM; Passaia G; Schünemann M; Maraschin Fdos S; Martins MO; Teixeira FK; Rauber R; Margis R; Silveira JA; Margis-Pinheiro M Plant Sci; 2014 Jan; 214():74-87. PubMed ID: 24268165 [TBL] [Abstract][Full Text] [Related]
33. Remodeling of the major light-harvesting antenna protein of PSII protects the young leaves of barley (Hordeum vulgare L.) from photoinhibition under prolonged iron deficiency. Saito A; Iino T; Sonoike K; Miwa E; Higuchi K Plant Cell Physiol; 2010 Dec; 51(12):2013-30. PubMed ID: 20980268 [TBL] [Abstract][Full Text] [Related]
34. Effect of Low Temperature on Chlorophyll Biosynthesis and Chloroplast Biogenesis of Rice Seedlings during Greening. Zhao Y; Han Q; Ding C; Huang Y; Liao J; Chen T; Feng S; Zhou L; Zhang Z; Chen Y; Yuan S; Yuan M Int J Mol Sci; 2020 Feb; 21(4):. PubMed ID: 32092859 [TBL] [Abstract][Full Text] [Related]
35. Reversible changes in structure and function of photosynthetic apparatus of pea (Pisum sativum) leaves under drought stress. Pandey J; Devadasu E; Saini D; Dhokne K; Marriboina S; Raghavendra AS; Subramanyam R Plant J; 2023 Jan; 113(1):60-74. PubMed ID: 36377283 [TBL] [Abstract][Full Text] [Related]
36. Reduced glutamine synthetase activity plays a role in control of photosynthetic responses to high light in barley leaves. Brestic M; Zivcak M; Olsovska K; Shao HB; Kalaji HM; Allakhverdiev SI Plant Physiol Biochem; 2014 Aug; 81():74-83. PubMed ID: 24491798 [TBL] [Abstract][Full Text] [Related]
37. Biogenesis of thylakoid membranes is controlled by light intensity in the conditional chlorophyll b-deficient CD3 mutant of wheat. Allen KD; Duysen ME; Staehelin LA J Cell Biol; 1988 Sep; 107(3):907-19. PubMed ID: 3047153 [TBL] [Abstract][Full Text] [Related]
38. Effects of reduced chlorophyll content on photosystem functions and photosynthetic electron transport rate in rice leaves. Wang G; Zeng F; Song P; Sun B; Wang Q; Wang J J Plant Physiol; 2022 May; 272():153669. PubMed ID: 35344760 [TBL] [Abstract][Full Text] [Related]
39. Characterisation of senescence-induced changes in light harvesting complex II and photosystem I complex of thylakoids of Cucumis sativus cotyledons: age induced association of LHCII with photosystem I. Prakash JS; Baig MA; Bhagwat AS; Mohanty P J Plant Physiol; 2003 Feb; 160(2):175-84. PubMed ID: 12685033 [TBL] [Abstract][Full Text] [Related]
40. PGR5-dependent cyclic electron transport around PSI contributes to the redox homeostasis in chloroplasts rather than CO(2) fixation and biomass production in rice. Nishikawa Y; Yamamoto H; Okegawa Y; Wada S; Sato N; Taira Y; Sugimoto K; Makino A; Shikanai T Plant Cell Physiol; 2012 Dec; 53(12):2117-26. PubMed ID: 23161858 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]