These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
104 related articles for article (PubMed ID: 22922398)
1. Clinal variation in stomatal characteristics of an Arctic sedge, Eriophorum vaginatum (Cyperaceae). Peterson CA; Fetcher N; McGraw JB; Bennington CC Am J Bot; 2012 Sep; 99(9):1562-71. PubMed ID: 22922398 [TBL] [Abstract][Full Text] [Related]
2. Leaf- and cell-level carbon cycling responses to a nitrogen and phosphorus gradient in two Arctic tundra species. Heskel MA; Anderson OR; Atkin OK; Turnbull MH; Griffin KL Am J Bot; 2012 Oct; 99(10):1702-14. PubMed ID: 22984095 [TBL] [Abstract][Full Text] [Related]
3. Northward displacement of optimal climate conditions for ecotypes of Eriophorum vaginatum L. across a latitudinal gradient in Alaska. McGraw JB; Turner JB; Souther S; Bennington CC; Vavrek MC; Shaver GR; Fetcher N Glob Chang Biol; 2015 Oct; 21(10):3827-35. PubMed ID: 26033529 [TBL] [Abstract][Full Text] [Related]
4. Differential responses of ecotypes to climate in a ubiquitous Arctic sedge: implications for future ecosystem C cycling. Curasi SR; Parker TC; Rocha AV; Moody ML; Tang J; Fetcher N New Phytol; 2019 Jul; 223(1):180-192. PubMed ID: 30883787 [TBL] [Abstract][Full Text] [Related]
5. Responses of root phenology in ecotypes of Eriophorum vaginatum to transplantation and warming in the Arctic. Ma T; Parker T; Unger S; Gewirtzman J; Fetcher N; Moody ML; Tang J Sci Total Environ; 2022 Jan; 805():149926. PubMed ID: 34543789 [TBL] [Abstract][Full Text] [Related]
6. Diurnal patterns of CO2 and H2O exchange of the Arctic sedges Eriophorum angustifolium and E. vaginatum (Cyperaceae). Gebauer R; Reynolds J; Tenhunen J Am J Bot; 1998 Apr; 85(4):592. PubMed ID: 21684941 [TBL] [Abstract][Full Text] [Related]
7. Comparative transcriptomics of an arctic foundation species, tussock cottongrass (Eriophorum vaginatum), during an extreme heat event. Mohl JE; Fetcher N; Stunz E; Tang J; Moody ML Sci Rep; 2020 Jun; 10(1):8990. PubMed ID: 32488082 [TBL] [Abstract][Full Text] [Related]
8. Differential ecophysiological response of deciduous shrubs and a graminoid to long-term experimental snow reductions and additions in moist acidic tundra, Northern Alaska. Pattison RR; Welker JM Oecologia; 2014 Feb; 174(2):339-50. PubMed ID: 24052332 [TBL] [Abstract][Full Text] [Related]
9. Acquired changes in stomatal characteristics in response to ozone during plant growth and leaf development of bush beans (Phaseolus vulgaris L.) indicate phenotypic plasticity. Elagöz V; Han SS; Manning WJ Environ Pollut; 2006 Apr; 140(3):395-405. PubMed ID: 16202494 [TBL] [Abstract][Full Text] [Related]
10. Elevation-related variation in leaf stomatal traits as a function of plant functional type: evidence from Changbai Mountain, China. Wang R; Yu G; He N; Wang Q; Xia F; Zhao N; Xu Z; Ge J PLoS One; 2014; 9(12):e115395. PubMed ID: 25517967 [TBL] [Abstract][Full Text] [Related]
11. Hydraulic properties of naturally regenerated beech saplings respond to canopy opening. Caquet B; Barigah TS; Cochard H; Montpied P; Collet C; Dreyer E; Epron D Tree Physiol; 2009 Nov; 29(11):1395-405. PubMed ID: 19744973 [TBL] [Abstract][Full Text] [Related]
12. Intraspecific variation in stomatal traits, leaf traits and physiology reflects adaptation along aridity gradients in a South African shrub. Carlson JE; Adams CA; Holsinger KE Ann Bot; 2016 Jan; 117(1):195-207. PubMed ID: 26424782 [TBL] [Abstract][Full Text] [Related]
13. Ecotypic differences in the phenology of the tundra species Parker TC; Tang J; Clark MB; Moody MM; Fetcher N Ecol Evol; 2017 Nov; 7(22):9775-9786. PubMed ID: 29188008 [No Abstract] [Full Text] [Related]
14. Effect of growth temperature on photosynthetic capacity and respiration in three ecotypes of Schedlbauer JL; Fetcher N; Hood K; Moody ML; Tang J Ecol Evol; 2018 Apr; 8(7):3711-3725. PubMed ID: 29686852 [TBL] [Abstract][Full Text] [Related]
15. Long-Term Response of an Arctic Sedge to Climate Change: A Simulation Study. Leadley PW; Reynolds JF Ecol Appl; 1992 Nov; 2(4):323-340. PubMed ID: 27759275 [TBL] [Abstract][Full Text] [Related]
16. Genome size variation in Cape schoenoid sedges (Schoeneae) and its ecophysiological consequences. van Mazijk R; West AG; Verboom GA; Elliott TL; Bureš P; Muasya AM Am J Bot; 2024 Aug; 111(8):e16315. PubMed ID: 38695147 [TBL] [Abstract][Full Text] [Related]
17. The unusual vascular structure of the corm of Eriophorum vaginatum: implications for efficient retranslocation of nutrients. Cholewa E; Griffith M J Exp Bot; 2004 Mar; 55(397):731-41. PubMed ID: 14754914 [TBL] [Abstract][Full Text] [Related]
18. The diversity of (13)C isotope discrimination in a Quercus robur full-sib family is associated with differences in intrinsic water use efficiency, transpiration efficiency, and stomatal conductance. Roussel M; Dreyer E; Montpied P; Le-Provost G; Guehl JM; Brendel O J Exp Bot; 2009; 60(8):2419-31. PubMed ID: 19380420 [TBL] [Abstract][Full Text] [Related]
19. Plasticity in maximum stomatal conductance constrained by negative correlation between stomatal size and density: an analysis using Eucalyptus globulus. Franks PJ; Drake PL; Beerling DJ Plant Cell Environ; 2009 Dec; 32(12):1737-1748. PubMed ID: 19682293 [TBL] [Abstract][Full Text] [Related]
20. Developmental contributions to phenotypic variation in functional leaf traits within quaking aspen clones. Smith EA; Collette SB; Boynton TA; Lillrose T; Stevens MR; Bekker MF; Eggett D; St Clair SB Tree Physiol; 2011 Jan; 31(1):68-77. PubMed ID: 21389003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]