These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 22922402)

  • 1. Streptomyces competition and co-evolution in relation to plant disease suppression.
    Kinkel LL; Schlatter DC; Bakker MG; Arenz BE
    Res Microbiol; 2012; 163(8):490-9. PubMed ID: 22922402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A coevolutionary framework for managing disease-suppressive soils.
    Kinkel LL; Bakker MG; Schlatter DC
    Annu Rev Phytopathol; 2011; 49():47-67. PubMed ID: 21639781
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rice Bran Amendment Suppresses Potato Common Scab by Increasing Antagonistic Bacterial Community Levels in the Rhizosphere.
    Tomihama T; Nishi Y; Mori K; Shirao T; Iida T; Uzuhashi S; Ohkuma M; Ikeda S
    Phytopathology; 2016 Jul; 106(7):719-28. PubMed ID: 27050572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Friends and foes: streptomycetes as modulators of plant disease and symbiosis.
    Schrey SD; Tarkka MT
    Antonie Van Leeuwenhoek; 2008 Jun; 94(1):11-9. PubMed ID: 18418729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Antagonistic effects of Streptomyces violaceusniger strain G10 on Fusarium oxysporum f.sp. cubense race 4: indirect evidence for the role of antibiosis in the antagonistic process.
    Getha K; Vikineswary S
    J Ind Microbiol Biotechnol; 2002 Jun; 28(6):303-10. PubMed ID: 12032802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Isolation and characterization of antagonistic fungi against potato scab pathogens from potato field soils.
    Tagawa M; Tamaki H; Manome A; Koyama O; Kamagata Y
    FEMS Microbiol Lett; 2010 Apr; 305(2):136-42. PubMed ID: 20653777
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bio-control and plant growth promotion potential of siderophore producing endophytic Streptomyces from Azadirachta indica A. Juss.
    Verma VC; Singh SK; Prakash S
    J Basic Microbiol; 2011 Oct; 51(5):550-6. PubMed ID: 21656792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Studies on the antibiosis of Streptomyces roseofulvus 210 against Bacillus mycoides infection of sugar beet.
    Stankiewicz M; Krezel Z
    Acta Microbiol Pol; 1984; 33(3-4):257-62. PubMed ID: 6083710
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Suppressive composts: microbial ecology links between abiotic environments and healthy plants.
    Hadar Y; Papadopoulou KK
    Annu Rev Phytopathol; 2012; 50():133-53. PubMed ID: 22920558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial populations responsible for specific soil suppressiveness to plant pathogens.
    Weller DM; Raaijmakers JM; Gardener BB; Thomashow LS
    Annu Rev Phytopathol; 2002; 40():309-48. PubMed ID: 12147763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Organic amendments and control of foot rot of Piper betle caused by Phytophthora parasitica var. piperina.
    Mehrotra RS; Tiwari DP
    Ann Microbiol (Paris); 1976 Apr; 127(3):415-21. PubMed ID: 952442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plant Community Richness Mediates Inhibitory Interactions and Resource Competition between Streptomyces and Fusarium Populations in the Rhizosphere.
    Essarioui A; LeBlanc N; Kistler HC; Kinkel LL
    Microb Ecol; 2017 Jul; 74(1):157-167. PubMed ID: 28058470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rapid and specific method for evaluating Streptomyces competitive dynamics in complex soil communities.
    Schlatter DC; Samac DA; Tesfaye M; Kinkel LL
    Appl Environ Microbiol; 2010 Mar; 76(6):2009-12. PubMed ID: 20080993
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular imprints of plant beneficial Streptomyces sp. AC30 and AC40 reveal differential capabilities and strategies to counter environmental stresses.
    Salwan R; Sharma V; Sharma A; Singh A
    Microbiol Res; 2020 May; 235():126449. PubMed ID: 32114361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Streptomyces as symbionts: an emerging and widespread theme?
    Seipke RF; Kaltenpoth M; Hutchings MI
    FEMS Microbiol Rev; 2012 Jul; 36(4):862-76. PubMed ID: 22091965
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathogen variation and urea influence selection and success of Streptomyces mixtures in biological control.
    Otto-Hanson LK; Grabau Z; Rosen C; Salomon CE; Kinkel LL
    Phytopathology; 2013 Jan; 103(1):34-42. PubMed ID: 23035630
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inhibitory effect of Streptomyces antibioticus and other microorganisms on Rhizobium.
    Foo EL; Varma AK
    Folia Microbiol (Praha); 1976; 21(4):315-9. PubMed ID: 789197
    [No Abstract]   [Full Text] [Related]  

  • 18. Evolution of plant pathogenicity in Streptomyces.
    Loria R; Kers J; Joshi M
    Annu Rev Phytopathol; 2006; 44():469-87. PubMed ID: 16719719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Search for actinomycetes--antagonists of fungi causing sugar beet root rot].
    Tulemisova KA; Chormonova NT
    Antibiot Khimioter; 1989 Nov; 34(11):816-9. PubMed ID: 2534467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Population dynamics study of Streptomyces olivocinereus in soil].
    Efremenkova LM; Kozhevin PA; Vinogradova KA; Zviagintsev DG
    Mikrobiologiia; 1978; 47(5):871-6. PubMed ID: 713880
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.