BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

362 related articles for article (PubMed ID: 22922448)

  • 1. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues.
    Tian B; Liu J; Dvir T; Jin L; Tsui JH; Qing Q; Suo Z; Langer R; Kohane DS; Lieber CM
    Nat Mater; 2012 Nov; 11(11):986-94. PubMed ID: 22922448
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanoelectronics-biology frontier: From nanoscopic probes for action potential recording in live cells to three-dimensional cyborg tissues.
    Duan X; Fu TM; Liu J; Lieber CM
    Nano Today; 2013 Aug; 8(4):351-373. PubMed ID: 24073014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multifunctional three-dimensional macroporous nanoelectronic networks for smart materials.
    Liu J; Xie C; Dai X; Jin L; Zhou W; Lieber CM
    Proc Natl Acad Sci U S A; 2013 Apr; 110(17):6694-9. PubMed ID: 23569270
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoelectronics meets biology: from new nanoscale devices for live-cell recording to 3D innervated tissues.
    Duan X; Lieber CM
    Chem Asian J; 2013 Oct; 8(10):2304-14. PubMed ID: 23946279
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D scaffolds for brain tissue regeneration: architectural challenges.
    Mahumane GD; Kumar P; du Toit LC; Choonara YE; Pillay V
    Biomater Sci; 2018 Oct; 6(11):2812-2837. PubMed ID: 30255869
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Three-dimensional macroporous materials for tissue engineering of craniofacial bone.
    Shakya AK; Kandalam U
    Br J Oral Maxillofac Surg; 2017 Nov; 55(9):875-891. PubMed ID: 29056355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development of novel three-dimensional scaffolds based on bacterial nanocellulose for tissue engineering and regenerative medicine: Effect of processing methods, pore size, and surface area.
    Osorio M; Fernández-Morales P; Gañán P; Zuluaga R; Kerguelen H; Ortiz I; Castro C
    J Biomed Mater Res A; 2019 Feb; 107(2):348-359. PubMed ID: 30421501
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning Physicochemical Properties of a Macroporous Polysaccharide-Based Scaffold for 3D Neuronal Culture.
    Gerschenfeld G; Aid R; Simon-Yarza T; Lanouar S; Charnay P; Letourneur D; Topilko P
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanowired three-dimensional cardiac patches.
    Dvir T; Timko BP; Brigham MD; Naik SR; Karajanagi SS; Levy O; Jin H; Parker KK; Langer R; Kohane DS
    Nat Nanotechnol; 2011 Sep; 6(11):720-5. PubMed ID: 21946708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Winner of the Young Investigator Award of the Society for Biomaterials (USA) for 2016, 10th World Biomaterials Congress, May 17-22, 2016, Montreal QC, Canada: Aligned microribbon-like hydrogels for guiding three-dimensional smooth muscle tissue regeneration.
    Lee S; Tong X; Han LH; Behn A; Yang F
    J Biomed Mater Res A; 2016 May; 104(5):1064-71. PubMed ID: 26799256
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and Structure-Function Characterization of 3D Printed Synthetic Porous Biomaterials for Tissue Engineering.
    Kelly CN; Miller AT; Hollister SJ; Guldberg RE; Gall K
    Adv Healthc Mater; 2018 Apr; 7(7):e1701095. PubMed ID: 29280325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluating 3D-printed biomaterials as scaffolds for vascularized bone tissue engineering.
    Wang MO; Vorwald CE; Dreher ML; Mott EJ; Cheng MH; Cinar A; Mehdizadeh H; Somo S; Dean D; Brey EM; Fisher JP
    Adv Mater; 2015 Jan; 27(1):138-44. PubMed ID: 25387454
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mesh Nanoelectronics: Seamless Integration of Electronics with Tissues.
    Dai X; Hong G; Gao T; Lieber CM
    Acc Chem Res; 2018 Feb; 51(2):309-318. PubMed ID: 29381054
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Macroporous Hydrogel Scaffolds for Three-Dimensional Cell Culture and Tissue Engineering.
    Fan C; Wang DA
    Tissue Eng Part B Rev; 2017 Oct; 23(5):451-461. PubMed ID: 28067115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effective seeding of smooth muscle cells into tubular poly(trimethylene carbonate) scaffolds for vascular tissue engineering.
    Song Y; Wennink JW; Kamphuis MM; Vermes I; Poot AA; Feijen J; Grijpma DW
    J Biomed Mater Res A; 2010 Nov; 95(2):440-6. PubMed ID: 20648539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CO
    Jiang J; Chen S; Wang H; Carlson MA; Gombart AF; Xie J
    Acta Biomater; 2018 Mar; 68():237-248. PubMed ID: 29269334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Three-dimensional (3D) printed scaffold and material selection for bone repair.
    Zhang L; Yang G; Johnson BN; Jia X
    Acta Biomater; 2019 Jan; 84():16-33. PubMed ID: 30481607
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of topography on tissue engineering perspective.
    Mansouri N; SamiraBagheri
    Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():906-21. PubMed ID: 26838922
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic nanoelectronic probes for biological cells and tissues.
    Tian B; Lieber CM
    Annu Rev Anal Chem (Palo Alto Calif); 2013; 6():31-51. PubMed ID: 23451719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio Mimicking of Extracellular Matrix.
    Ghosh M; Halperin-Sternfeld M; Adler-Abramovich L
    Adv Exp Med Biol; 2019; 1174():371-399. PubMed ID: 31713206
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.