These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 22922644)

  • 1. Lubrication mechanisms of hollow-core inorganic fullerene-like nanoparticles: coupling experimental and computational works.
    Lahouij I; Bucholz EW; Vacher B; Sinnott SB; Martin JM; Dassenoy F
    Nanotechnology; 2012 Sep; 23(37):375701. PubMed ID: 22922644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bright-field electron tomography of individual inorganic fullerene-like structures.
    Bar Sadan M; Wolf SG; Houben L
    Nanoscale; 2010 Mar; 2(3):423-8. PubMed ID: 20644827
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thin films of fullerene-like MoS2 nanoparticles with ultra-low friction and wear.
    Chhowalla M; Amaratunga GA
    Nature; 2000 Sep; 407(6801):164-7. PubMed ID: 11001049
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Friction mechanism of individual multilayered nanoparticles.
    Tevet O; Von-Huth P; Popovitz-Biro R; Rosentsveig R; Wagner HD; Tenne R
    Proc Natl Acad Sci U S A; 2011 Dec; 108(50):19901-6. PubMed ID: 22084073
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocompression of individual multilayered polyhedral nanoparticles.
    Tevet O; Goldbart O; Cohen SR; Rosentsveig R; Popovitz-Biro R; Wagner HD; Tenne R
    Nanotechnology; 2010 Sep; 21(36):365705. PubMed ID: 20702934
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hollow V(2)O(5) nanoparticles (fullerene-like analogues) prepared by laser ablation.
    Levi R; Bar-Sadan M; Albu-Yaron A; Popovitz-Biro R; Houben L; Shahar C; Enyashin A; Seifert G; Prior Y; Tenne R
    J Am Chem Soc; 2010 Aug; 132(32):11214-22. PubMed ID: 20698688
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Advances in the synthesis of inorganic nanotubes and fullerene-like nanoparticles.
    Tenne R
    Angew Chem Int Ed Engl; 2003 Nov; 42(42):5124-32. PubMed ID: 14601163
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improved orthodontic stainless steel wires coated with inorganic fullerene-like nanoparticles of WS(2) impregnated in electroless nickel-phosphorous film.
    Redlich M; Katz A; Rapoport L; Wagner HD; Feldman Y; Tenne R
    Dent Mater; 2008 Dec; 24(12):1640-6. PubMed ID: 18495238
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recent progress in the research of inorganic fullerene-like nanoparticles and inorganic nanotubes.
    Tenne R; Redlich M
    Chem Soc Rev; 2010 May; 39(5):1423-34. PubMed ID: 20419198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface functionalization of WS2 fullerene-like nanoparticles.
    Shahar C; Zbaida D; Rapoport L; Cohen H; Bendikov T; Tannous J; Dassenoy F; Tenne R
    Langmuir; 2010 Mar; 26(6):4409-14. PubMed ID: 19961198
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tribological behavior of artificial hip joint under the effects of magnetic field in dry and lubricated sliding.
    Zaki M; Aljinaidi A; Hamed M
    Biomed Mater Eng; 2003; 13(3):205-21. PubMed ID: 12883170
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Conformational and adsorptive characteristics of albumin affect interfacial protein boundary lubrication: from experimental to molecular dynamics simulation approaches.
    Fang HW; Hsieh MC; Huang HT; Tsai CY; Chang MH
    Colloids Surf B Biointerfaces; 2009 Feb; 68(2):171-7. PubMed ID: 19026525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transmission electron microscopy and theoretical analysis of AuCu nanoparticles: atomic distribution and dynamic behavior.
    Ascencio JA; Liu HB; Pal U; Medina A; Wang ZL
    Microsc Res Tech; 2006 Jul; 69(7):522-30. PubMed ID: 16732542
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The boundary lubrication of chemically grafted and cross-linked hyaluronic acid in phosphate buffered saline and lipid solutions measured by the surface forces apparatus.
    Yu J; Banquy X; Greene GW; Lowrey DD; Israelachvili JN
    Langmuir; 2012 Jan; 28(4):2244-50. PubMed ID: 22148857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Size-dependent shape evolution of silica nanoparticles into hollow structures.
    Park SJ; Kim YJ; Park SJ
    Langmuir; 2008 Nov; 24(21):12134-7. PubMed ID: 18834158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A computational chemistry study on friction of h-MoS(2). Part I. Mechanism of single sheet lubrication.
    Onodera T; Morita Y; Suzuki A; Koyama M; Tsuboi H; Hatakeyama N; Endou A; Takaba H; Kubo M; Dassenoy F; Minfray C; Joly-Pottuz L; Martin JM; Miyamoto A
    J Phys Chem B; 2009 Dec; 113(52):16526-36. PubMed ID: 19968319
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water.
    Wu H; Yang R; Song B; Han Q; Li J; Zhang Y; Fang Y; Tenne R; Wang C
    ACS Nano; 2011 Feb; 5(2):1276-81. PubMed ID: 21230008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Biomimetic synthesis of raspberry-like hybrid polymer-silica core-shell nanoparticles by templating colloidal particles with hairy polyamine shell.
    Pi M; Yang T; Yuan J; Fujii S; Kakigi Y; Nakamura Y; Cheng S
    Colloids Surf B Biointerfaces; 2010 Jul; 78(2):193-9. PubMed ID: 20347275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Compressive properties of hollow BN nanoparticles: theoretical modeling and testing using a high-resolution transmission electron microscope.
    Firestein KL; Kvashnin DG; Kovalskii AM; Popov ZI; Sorokin PB; Golberg DV; Shtansky DV
    Nanoscale; 2018 May; 10(17):8099-8105. PubMed ID: 29671456
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Lubrication and friction prediction in metal-on-metal hip implants.
    Wang FC; Brockett C; Williams S; Udofia I; Fisher J; Jin ZM
    Phys Med Biol; 2008 Mar; 53(5):1277-93. PubMed ID: 18296762
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.