These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 22922868)

  • 1. How do 'housekeeping' genes control organogenesis?--Unexpected new findings on the role of housekeeping genes in cell and organ differentiation.
    Tsukaya H; Byrne ME; Horiguchi G; Sugiyama M; Van Lijsebettens M; Lenhard M
    J Plant Res; 2013 Jan; 126(1):3-15. PubMed ID: 22922868
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant organ size control: AINTEGUMENTA regulates growth and cell numbers during organogenesis.
    Mizukami Y; Fischer RL
    Proc Natl Acad Sci U S A; 2000 Jan; 97(2):942-7. PubMed ID: 10639184
    [TBL] [Abstract][Full Text] [Related]  

  • 3. AINTEGUMENTA promotes petal identity and acts as a negative regulator of AGAMOUS.
    Krizek BA; Prost V; Macias A
    Plant Cell; 2000 Aug; 12(8):1357-66. PubMed ID: 10948255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The AP2-like gene NsAP2 from water lily is involved in floral organogenesis and plant height.
    Luo H; Chen S; Jiang J; Teng N; Chen Y; Chen F
    J Plant Physiol; 2012 Jul; 169(10):992-8. PubMed ID: 22591856
    [TBL] [Abstract][Full Text] [Related]  

  • 5. PLENA and FARINELLI: redundancy and regulatory interactions between two Antirrhinum MADS-box factors controlling flower development.
    Davies B; Motte P; Keck E; Saedler H; Sommer H; Schwarz-Sommer Z
    EMBO J; 1999 Jul; 18(14):4023-34. PubMed ID: 10406807
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Development of root-hair and trichome in Arabidopsis].
    Wada T; Okada K
    Tanpakushitsu Kakusan Koso; 2002 Sep; 47(12 Suppl):1599-604. PubMed ID: 12357619
    [No Abstract]   [Full Text] [Related]  

  • 7. HD-zip III homeobox genes that include a novel member, ZeHB-13 (Zinnia)/ATHB-15 (Arabidopsis), are involved in procambium and xylem cell differentiation.
    Ohashi-Ito K; Fukuda H
    Plant Cell Physiol; 2003 Dec; 44(12):1350-8. PubMed ID: 14701930
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The maize MADS box gene ZmMADS3 affects node number and spikelet development and is co-expressed with ZmMADS1 during flower development, in egg cells, and early embryogenesis.
    Heuer S; Hansen S; Bantin J; Brettschneider R; Kranz E; Lörz H; Dresselhaus T
    Plant Physiol; 2001 Sep; 127(1):33-45. PubMed ID: 11553732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Organogenesis in plants: initiation and elaboration of leaves.
    Sluis A; Hake S
    Trends Genet; 2015 Jun; 31(6):300-6. PubMed ID: 26003219
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Entopically additive expression of GLABRA2 alters the frequency and spacing of trichome initiation.
    Ohashi Y; Oka A; Ruberti I; Morelli G; Aoyama T
    Plant J; 2002 Feb; 29(3):359-69. PubMed ID: 11844112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Petal and stamen development.
    Irish VF
    Curr Top Dev Biol; 1999; 41():133-61. PubMed ID: 9784975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. OsMADS57 together with OsTB1 coordinates transcription of its target OsWRKY94 and D14 to switch its organogenesis to defense for cold adaptation in rice.
    Chen L; Zhao Y; Xu S; Zhang Z; Xu Y; Zhang J; Chong K
    New Phytol; 2018 Apr; 218(1):219-231. PubMed ID: 29364524
    [TBL] [Abstract][Full Text] [Related]  

  • 13. HUA1 and HUA2 are two members of the floral homeotic AGAMOUS pathway.
    Chen X; Meyerowitz EM
    Mol Cell; 1999 Mar; 3(3):349-60. PubMed ID: 10198637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular control of normal and acrocona mutant seed cone development in Norway spruce (Picea abies) and the evolution of conifer ovule-bearing organs.
    Carlsbecker A; Sundström JF; Englund M; Uddenberg D; Izquierdo L; Kvarnheden A; Vergara-Silva F; Engström P
    New Phytol; 2013 Oct; 200(1):261-275. PubMed ID: 23772833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana.
    Ishida T; Aida M; Takada S; Tasaka M
    Plant Cell Physiol; 2000 Jan; 41(1):60-7. PubMed ID: 10750709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relearning our ABCs: new twists on an old model.
    Jack T
    Trends Plant Sci; 2001 Jul; 6(7):310-6. PubMed ID: 11435170
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation and characterisation of a dwarf rice mutant exhibiting defective gibberellins biosynthesis.
    Ji SH; Gururani MA; Lee JW; Ahn BO; Chun SC
    Plant Biol (Stuttg); 2014 Mar; 16(2):428-39. PubMed ID: 23944972
    [TBL] [Abstract][Full Text] [Related]  

  • 18. KNAT3/4/5-like class 2 KNOX transcription factors are involved in Medicago truncatula symbiotic nodule organ development.
    Di Giacomo E; Laffont C; Sciarra F; Iannelli MA; Frugier F; Frugis G
    New Phytol; 2017 Jan; 213(2):822-837. PubMed ID: 27582377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential selective constraints shaping codon usage pattern of housekeeping and tissue-specific homologous genes of rice and arabidopsis.
    Mukhopadhyay P; Basak S; Ghosh TC
    DNA Res; 2008 Dec; 15(6):347-56. PubMed ID: 18827062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Changes in gene expression in the wood-forming tissue of transgenic hybrid aspen with increased secondary growth.
    Israelsson M; Eriksson ME; Hertzberg M; Aspeborg H; Nilsson P; Moritz T
    Plant Mol Biol; 2003 Jul; 52(4):893-903. PubMed ID: 13677475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.