These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 22923014)
1. Selective deletion of the internal lysine residue from the peptide sequence by collisional activation. Banerjee S; Mazumdar S J Am Soc Mass Spectrom; 2012 Nov; 23(11):1967-80. PubMed ID: 22923014 [TBL] [Abstract][Full Text] [Related]
2. Occurrence of C-terminal residue exclusion in peptide fragmentation by ESI and MALDI tandem mass spectrometry. Dupré M; Cantel S; Martinez J; Enjalbal C J Am Soc Mass Spectrom; 2012 Feb; 23(2):330-46. PubMed ID: 22095165 [TBL] [Abstract][Full Text] [Related]
3. Selective cleavage enhanced by acetylating the side chain of lysine. Fu L; Chen T; Xue G; Zu L; Fang W J Mass Spectrom; 2013 Jan; 48(1):128-34. PubMed ID: 23303756 [TBL] [Abstract][Full Text] [Related]
4. Cyclization reaction of peptide fragment ions during multistage collisionally activated decomposition: an inducement to lose internal amino-acid residues. Jia C; Qi W; He Z J Am Soc Mass Spectrom; 2007 Apr; 18(4):663-78. PubMed ID: 17234429 [TBL] [Abstract][Full Text] [Related]
5. Dehydration versus deamination of N-terminal glutamine in collision-induced dissociation of protonated peptides. Neta P; Pu QL; Kilpatrick L; Yang X; Stein SE J Am Soc Mass Spectrom; 2007 Jan; 18(1):27-36. PubMed ID: 17005415 [TBL] [Abstract][Full Text] [Related]
6. Study of peptides containing modified lysine residues by tandem mass spectrometry: precursor ion scanning of hexanal-modified peptides. Fenaille F; Tabet JC; Guy PA Rapid Commun Mass Spectrom; 2004; 18(1):67-76. PubMed ID: 14689561 [TBL] [Abstract][Full Text] [Related]
7. Gas-phase rearrangement reaction of Schiff-base-modified peptide ions. Wang N; Pilo AL; Zhao F; Bu J; McLuckey SA Rapid Commun Mass Spectrom; 2018 Dec; 32(24):2166-2173. PubMed ID: 30280440 [TBL] [Abstract][Full Text] [Related]
8. Fragmentation of peptides with N-terminal dimethylation and imine/methylol adduction at the tryptophan side-chain. Fu Q; Li L J Am Soc Mass Spectrom; 2006 Jun; 17(6):859-866. PubMed ID: 16616858 [TBL] [Abstract][Full Text] [Related]
9. Specific rearrangement reactions of acetylated lysine containing peptide bn (n = 4-7) ion series. Atik AE; Hernandez O; Maître P; Yalcin T J Mass Spectrom; 2014 Dec; 49(12):1290-7. PubMed ID: 25476947 [TBL] [Abstract][Full Text] [Related]
10. Gas-phase fragmentation characteristics of benzyl-aminated lysyl-containing tryptic peptides. Simon ES; Papoulias PG; Andrews PC J Am Soc Mass Spectrom; 2010 Sep; 21(9):1624-32. PubMed ID: 20471281 [TBL] [Abstract][Full Text] [Related]
11. Gold(I) Cationization Promotes Ring Opening in Lysine-Containing Cyclic Peptides. Foreman DJ; Lawler JT; Niedrauer ML; Hostetler MA; McLuckey SA J Am Soc Mass Spectrom; 2019 Oct; 30(10):1914-1922. PubMed ID: 31250319 [TBL] [Abstract][Full Text] [Related]
12. Observation of an unusually facile fragmentation pathway of gas-phase peptide ions: a study on the gas-phase fragmentation mechanism and energetics of tryptic peptides modified with 4-sulfophenyl isothiocyanate (SPITC) and 4-chlorosulfophenyl isocyanate (SPC) and their 18-crown-6 complexes. Shin JW; Lee YH; Hwang S; Lee SW J Mass Spectrom; 2007 Mar; 42(3):380-8. PubMed ID: 17200996 [TBL] [Abstract][Full Text] [Related]
13. Analysis of arginine and lysine methylation utilizing peptide separations at neutral pH and electron transfer dissociation mass spectrometry. Snijders AP; Hung ML; Wilson SA; Dickman MJ J Am Soc Mass Spectrom; 2010 Jan; 21(1):88-96. PubMed ID: 19850496 [TBL] [Abstract][Full Text] [Related]
14. Neutral loss of water from the b ions with histidine at the C-terminus and formation of the c ions involving lysine side chains. Fu Q; Li L J Mass Spectrom; 2006 Dec; 41(12):1600-7. PubMed ID: 16830357 [TBL] [Abstract][Full Text] [Related]
15. Comparison of the effects of ionization mechanism, analyte concentration, and ion "cool-times" on the internal energies of peptide ions produced by electrospray and atmospheric pressure matrix-assisted laser desorption ionization. Konn DO; Murrell J; Despeyroux D; Gaskell SJ J Am Soc Mass Spectrom; 2005 May; 16(5):743-51. PubMed ID: 15862775 [TBL] [Abstract][Full Text] [Related]
16. Free radical-induced site-specific peptide cleavage in the gas phase: low-energy collision-induced dissociation in ESI- and MALDI mass spectrometry. Yin H; Chacon A; Porter NA; Masterson DS J Am Soc Mass Spectrom; 2007 May; 18(5):807-16. PubMed ID: 17307363 [TBL] [Abstract][Full Text] [Related]
17. Probing lysine acetylation with a modification-specific marker ion using high-performance liquid chromatography/electrospray-mass spectrometry with collision-induced dissociation. Kim JY; Kim KW; Kwon HJ; Lee DW; Yoo JS Anal Chem; 2002 Nov; 74(21):5443-9. PubMed ID: 12433071 [TBL] [Abstract][Full Text] [Related]
18. N-Terminal amino acid side-chain cleavage of chemically modified peptides in the gas phase: a mass spectrometry technique for N-terminus identification. Chacon A; Masterson DS; Yin H; Liebler DC; Porter NA Bioorg Med Chem; 2006 Sep; 14(18):6213-22. PubMed ID: 16784867 [TBL] [Abstract][Full Text] [Related]
19. Electron capture dissociation mass spectrometry of peptide cations containing a lysine homologue: a mobile proton model for explaining the observation of b-type product ions. Lee S; Chung G; Kim J; Oh HB Rapid Commun Mass Spectrom; 2006; 20(21):3167-75. PubMed ID: 17016809 [TBL] [Abstract][Full Text] [Related]
20. Host-guest chemistry in the gas phase: selected fragmentations of CB[6]-peptide complexes at lysine residues and its utility to probe the structures of small proteins. Heo SW; Choi TS; Park KM; Ko YH; Kim SB; Kim K; Kim HI Anal Chem; 2011 Oct; 83(20):7916-23. PubMed ID: 21923148 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]