These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 22923014)
21. Cyclization and rearrangement reactions of a(n) fragment ions of protonated peptides. Bythell BJ; Maître P; Paizs B J Am Chem Soc; 2010 Oct; 132(42):14766-79. PubMed ID: 20925356 [TBL] [Abstract][Full Text] [Related]
22. Non-covalent dimers of the lysine containing protonated peptide ions in gaseous state: electrospray ionization mass spectrometric study. Banerjee S; Mazumdar S J Mass Spectrom; 2010 Oct; 45(10):1212-9. PubMed ID: 20872902 [TBL] [Abstract][Full Text] [Related]
23. Formation of (bn-1 + H2O) ions by collisional activation of MALDI-formed peptide [M + H]+ ions in a QqTOF mass spectrometer. She YM; Krokhin O; Spicer V; Loboda A; Garland G; Ens W; Standing KG; Westmore JB J Am Soc Mass Spectrom; 2007 Jun; 18(6):1024-37. PubMed ID: 17418589 [TBL] [Abstract][Full Text] [Related]
24. Rearrangements of doubly charged acylium ions from lysyl and ornithyl peptides. Tang XJ; Boyd RK Rapid Commun Mass Spectrom; 1994 Sep; 8(9):678-86. PubMed ID: 7524806 [TBL] [Abstract][Full Text] [Related]
25. Effects of the position of internal histidine residues on the collision-induced fragmentation of triply protonated tryptic peptides. Willard BB; Kinter M J Am Soc Mass Spectrom; 2001 Dec; 12(12):1262-71. PubMed ID: 11766753 [TBL] [Abstract][Full Text] [Related]
26. Impact of proline and aspartic acid residues on the dissociation of intermolecularly crosslinked peptides. Gardner MW; Brodbelt JS J Am Soc Mass Spectrom; 2008 Mar; 19(3):344-57. PubMed ID: 18083526 [TBL] [Abstract][Full Text] [Related]
27. The specific isolation of C-terminal peptides of proteins through a transamination reaction and its advantage for introducing functional groups into the peptide. Sonomura K; Kuyama H; Matsuo E; Tsunasawa S; Nishimura O Rapid Commun Mass Spectrom; 2009 Mar; 23(5):611-8. PubMed ID: 19165755 [TBL] [Abstract][Full Text] [Related]
28. The radical ion chemistry of S-nitrosylated peptides. Jones AW; Winn PJ; Cooper HJ J Am Soc Mass Spectrom; 2012 Dec; 23(12):2063-74. PubMed ID: 23055078 [TBL] [Abstract][Full Text] [Related]
29. Phosphorylation site identification via ion trap tandem mass spectrometry of whole protein and peptide ions: bovine alpha-crystallin A chain. Hogan JM; Pitteri SJ; McLuckey SA Anal Chem; 2003 Dec; 75(23):6509-16. PubMed ID: 14640721 [TBL] [Abstract][Full Text] [Related]
30. Substituent effects on the gas-phase fragmentation reactions of sulfonium ion containing peptides. Sierakowski J; Amunugama M; Roberts KD; Reid GE Rapid Commun Mass Spectrom; 2007; 21(7):1230-8. PubMed ID: 17330214 [TBL] [Abstract][Full Text] [Related]
31. Mass spectrometric quantification of acetylation at specific lysines within the amino-terminal tail of histone H4. Smith CM; Gafken PR; Zhang Z; Gottschling DE; Smith JB; Smith DL Anal Biochem; 2003 May; 316(1):23-33. PubMed ID: 12694723 [TBL] [Abstract][Full Text] [Related]
32. Electrospray ionization tandem mass spectrometric study of protonated and alkali- cationized α/ε-hybrid peptides: differentiation of a pair of dipeptide positional isomers. Ramesh Babu A; Raju G; Purna Chander C; Shoban Babu B; Srinivas R; Sharma GV Eur J Mass Spectrom (Chichester); 2016; 22(4):181-191. PubMed ID: 27882883 [TBL] [Abstract][Full Text] [Related]
33. Effect of N-terminal glutamic acid and glutamine on fragmentation of peptide ions. Godugu B; Neta P; Simón-Manso Y; Stein SE J Am Soc Mass Spectrom; 2010 Jul; 21(7):1169-76. PubMed ID: 20413325 [TBL] [Abstract][Full Text] [Related]
35. Fragmentation of the deprotonated ions of peptides containing cysteine, cysteine sulfinic acid, cysteine sulfonic acid, aspartic acid, and glutamic acid. Men L; Wang Y Rapid Commun Mass Spectrom; 2006; 20(5):777-84. PubMed ID: 16470564 [TBL] [Abstract][Full Text] [Related]
36. Supramolecular modification of ion chemistry: modulation of peptide charge state and dissociation behavior through complexation with cucurbit[n]uril (n = 5, 6) or alpha-cyclodextrin. Zhang H; Grabenauer M; Bowers MT; Dearden DV J Phys Chem A; 2009 Feb; 113(8):1508-17. PubMed ID: 19191519 [TBL] [Abstract][Full Text] [Related]
37. Differentiating alpha- and beta-aspartic acids by electrospray ionization and low-energy tandem mass spectrometry. González LJ; Shimizu T; Satomi Y; Betancourt L; Besada V; Padrón G; Orlando R; Shirasawa T; Shimonishi Y; Takao T Rapid Commun Mass Spectrom; 2000; 14(22):2092-102. PubMed ID: 11114015 [TBL] [Abstract][Full Text] [Related]
38. Specific UV photodissociation of tyrosyl-containing peptides in multistage mass spectrometry. Joly L; Antoine R; Broyer M; Dugourd P; Lemoine J J Mass Spectrom; 2007 Jun; 42(6):818-24. PubMed ID: 17511013 [TBL] [Abstract][Full Text] [Related]
39. A mass spectrometric and molecular orbital study of H2O loss from protonated tryptophan and oxidized tryptophan derivatives. Lioe H; O'Hair RA; Reid GE Rapid Commun Mass Spectrom; 2004; 18(9):978-88. PubMed ID: 15116425 [TBL] [Abstract][Full Text] [Related]
40. Characterization of amino acid side chain losses in electron capture dissociation. Cooper HJ; Hudgins RR; Håkansson K; Marshall AG J Am Soc Mass Spectrom; 2002 Mar; 13(3):241-9. PubMed ID: 11908804 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]