These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 22923114)

  • 1. Phospholipase A₂ inhibitors in bacterial culture broth enhance pathogenicity of a fungus Nomuraea rileyi.
    Park JA; Kim Y
    J Microbiol; 2012 Aug; 50(4):644-51. PubMed ID: 22923114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phospholipase A2 inhibitors synthesized by two entomopathogenic bacteria, Xenorhabdus nematophila and Photorhabdus temperata subsp. temperata.
    Seo S; Lee S; Hong Y; Kim Y
    Appl Environ Microbiol; 2012 Jun; 78(11):3816-23. PubMed ID: 22447611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Two groups of entomopathogenic bacteria, Photorhabdus and Xenorhabdus, share an inhibitory action against phospholipase A2 to induce host immunodepression.
    Kim Y; Ji D; Cho S; Park Y
    J Invertebr Pathol; 2005 Jul; 89(3):258-64. PubMed ID: 15979640
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Virulent secondary metabolites of entomopathogenic bacteria genera, Xenorhabdus and Photorhabdus, inhibit phospholipase A
    Mollah MMI; Kim Y
    BMC Microbiol; 2020 Nov; 20(1):359. PubMed ID: 33228536
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bacterial metabolites of an entomopathogenic bacterium, Xenorhabdus nematophila, inhibit a catalytic activity of phenoloxidase of the diamondback moth, Plutella xylostella.
    Song CJ; Seo S; Shrestha S; Kim Y
    J Microbiol Biotechnol; 2011 Mar; 21(3):317-22. PubMed ID: 21464604
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential immunosuppression by inhibiting PLA
    Ahmed S; Kim Y
    J Invertebr Pathol; 2018 Sep; 157():136-146. PubMed ID: 29802883
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A prophylactic role of a secretory PLA
    Vatanparast M; Ahmed S; Sajjadian SM; Kim Y
    Dev Comp Immunol; 2019 Jun; 95():108-117. PubMed ID: 30776421
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits the expression of an antibacterial peptide, cecropin, of the beet armyworm, Spodoptera exigua.
    Ji D; Kim Y
    J Insect Physiol; 2004 Jun; 50(6):489-96. PubMed ID: 15183278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An entomopathogenic bacterium, Xenorhabdus nematophila, inhibits hemocyte phagocytosis of Spodoptera exigua by inhibiting phospholipase A(2).
    Shrestha S; Kim Y
    J Invertebr Pathol; 2007 Sep; 96(1):64-70. PubMed ID: 17395196
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a high efficient "Dual Bt-Plus" insecticide using a primary form of an entomopathogenic bacterium, Xenorhabdus nematophila.
    Eom S; Park Y; Kim H; Kim Y
    J Microbiol Biotechnol; 2014 Apr; 24(4):507-21. PubMed ID: 24394195
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of an entomopathogenic fungal virulence against the seedcorn maggot, Delia platura, by suppressing immune responses with a bacterial culture broth of Photorhabdus temperata subsp. temperata.
    Abdisa E; Park H; Kwon J; Jin G; Esmaeily M; Kim Y
    Arch Insect Biochem Physiol; 2024 Mar; 115(3):e22103. PubMed ID: 38517449
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sequential immunosuppressive activities of bacterial secondary metabolites from the entomopahogenic bacterium Xenorhabdus nematophila.
    Eom S; Park Y; Kim Y
    J Microbiol; 2014 Feb; 52(2):161-8. PubMed ID: 24500481
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toll signal pathway activating eicosanoid biosynthesis shares its conserved upstream recognition components in a lepidopteran Spodoptera exigua upon infection by Metarhizium rileyi, an entomopathogenic fungus.
    Roy MC; Kim Y
    J Invertebr Pathol; 2022 Feb; 188():107707. PubMed ID: 34952100
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity of oil-formulated conidia of the fungal entomopathogens Nomuraea rileyi and Isaria tenuipes against lepidopterous larvae.
    Vega-Aquino P; Sanchez-Peña S; Blanco CA
    J Invertebr Pathol; 2010 Mar; 103(3):145-9. PubMed ID: 20025883
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific inhibition of Xenorhabdus hominickii, an entomopathogenic bacterium, against different types of host insect phospholipase A
    Sadekuzzaman M; Kim Y
    J Invertebr Pathol; 2017 Oct; 149():97-105. PubMed ID: 28803982
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thioredoxin peroxidase gene is involved in resistance to biocontrol fungus Nomuraea rileyi in Spodoptera litura: gene cloning, expression, localization and function.
    Chen H; Yin Y; Feng E; Li Y; Xie X; Wang Z
    Dev Comp Immunol; 2014 May; 44(1):76-85. PubMed ID: 24296440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gene cloning, expression, and function analysis of SpL14-3-3ζ in Spodoptera litura and its response to the entomopathogenic fungus Nomuraea rileyi.
    Feng E; Chen H; Li Y; Jiang W; Wang Z; Yin Y
    Comp Biochem Physiol B Biochem Mol Biol; 2014; 172-173():49-56. PubMed ID: 24747013
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An entomopathogenic bacterium, Xenorhabdus nematophila, suppresses expression of antimicrobial peptides controlled by Toll and Imd pathways by blocking eicosanoid biosynthesis.
    Hwang J; Park Y; Kim Y; Hwang J; Lee D
    Arch Insect Biochem Physiol; 2013 Jul; 83(3):151-69. PubMed ID: 23740621
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemagglutinin activity in the hemolymph of Anticarsia gemmatalis larvae infected with the fungus Nomuraea rileyi.
    Pendland JC; Boucias DG
    Dev Comp Immunol; 1985; 9(1):21-30. PubMed ID: 3996705
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of monoclonal antibodies against cell wall epitopes of the insect pathogenic fungus, Nomuraea rileyi: differential binding to fungal surfaces and cross-reactivity with host hemocytes and basement membrane components.
    Pendland JC; Boucias DG
    Eur J Cell Biol; 1998 Feb; 75(2):118-27. PubMed ID: 9548369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.