These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 22923206)

  • 1. Spatiotemporal neural interactions underlying continuous drawing movements as revealed by magnetoencephalography.
    Christopoulos VN; Leuthold AC; Georgopoulos AP
    Exp Brain Res; 2012 Oct; 222(1-2):159-71. PubMed ID: 22923206
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural mechanisms of movement speed and tau as revealed by magnetoencephalography.
    Tan H-RM; Leuthold AC; Lee DN; Lynch JK; Georgopoulos AP
    Exp Brain Res; 2009 Jun; 195(4):541-52. PubMed ID: 19424687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Time series analysis of magnetoencephalographic data during copying.
    Leuthold AC; Langheim FJ; Lewis SM; Georgopoulos AP
    Exp Brain Res; 2005 Aug; 164(4):411-22. PubMed ID: 15864567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Neural mechanisms underlying the exploration of small city maps using magnetoencephalography.
    Sakellaridi S; Christova P; Christopoulos V; Leuthold AC; Peponis J; Georgopoulos AP
    Exp Brain Res; 2015 Nov; 233(11):3187-200. PubMed ID: 26253309
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Magnetoencephalographic signals predict movement trajectory in space.
    Georgopoulos AP; Langheim FJ; Leuthold AC; Merkle AN
    Exp Brain Res; 2005 Nov; 167(1):132-5. PubMed ID: 16044305
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The mirror illusion induces high gamma oscillations in the absence of movement.
    Butorina A; Prokofyev A; Nazarova M; Litvak V; Stroganova T
    Neuroimage; 2014 Dec; 103():181-191. PubMed ID: 25241908
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment and elimination of the effects of head movement on MEG resting-state measures of oscillatory brain activity.
    Messaritaki E; Koelewijn L; Dima DC; Williams GM; Perry G; Singh KD
    Neuroimage; 2017 Oct; 159():302-324. PubMed ID: 28735011
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decoding center-out hand velocity from MEG signals during visuomotor adaptation.
    Bradberry TJ; Rong F; Contreras-Vidal JL
    Neuroimage; 2009 Oct; 47(4):1691-700. PubMed ID: 19539036
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inferior frontal gyrus links visual and motor cortices during a visuomotor precision grip force task.
    Papadelis C; Arfeller C; Erla S; Nollo G; Cattaneo L; Braun C
    Brain Res; 2016 Nov; 1650():252-266. PubMed ID: 27641995
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Macroscopic Neural Oscillation during Skilled Reaching Movements in Humans.
    Yeom HG; Kim JS; Chung CK
    Comput Intell Neurosci; 2016; 2016():2714052. PubMed ID: 27524996
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Feedforward and feedback processes in motor control.
    Seidler RD; Noll DC; Thiers G
    Neuroimage; 2004 Aug; 22(4):1775-83. PubMed ID: 15275933
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Distributed sensitivity for movement amplitude in directionally tuned neuronal populations.
    Fabbri S; Caramazza A; Lingnau A
    J Neurophysiol; 2012 Apr; 107(7):1845-56. PubMed ID: 22205646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simultaneous reconstruction of continuous hand movements from primary motor and posterior parietal cortex.
    Philip BA; Rao N; Donoghue JP
    Exp Brain Res; 2013 Mar; 225(3):361-75. PubMed ID: 23274645
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synchronous dynamic brain networks revealed by magnetoencephalography.
    Langheim FJ; Leuthold AC; Georgopoulos AP
    Proc Natl Acad Sci U S A; 2006 Jan; 103(2):455-9. PubMed ID: 16387850
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hand movement direction decoded from MEG and EEG.
    Waldert S; Preissl H; Demandt E; Braun C; Birbaumer N; Aertsen A; Mehring C
    J Neurosci; 2008 Jan; 28(4):1000-8. PubMed ID: 18216207
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociating visual and motor directional selectivity using visuomotor adaptation.
    Haar S; Donchin O; Dinstein I
    J Neurosci; 2015 Apr; 35(17):6813-21. PubMed ID: 25926457
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neural decoding of unilateral upper limb movements using single trial MEG signals.
    Sugata H; Goto T; Hirata M; Yanagisawa T; Shayne M; Matsushita K; Yoshimine T; Yorifuji S
    Brain Res; 2012 Aug; 1468():29-37. PubMed ID: 22683716
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Distinct cortical networks for hand movement initiation and directional processing: An EEG study.
    Kobler RJ; Kolesnichenko E; Sburlea AI; Müller-Putz GR
    Neuroimage; 2020 Oct; 220():117076. PubMed ID: 32585349
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Discrete and continuous planning of hand movements and isometric force trajectories.
    Ghez C; Favilla M; Ghilardi MF; Gordon J; Bermejo R; Pullman S
    Exp Brain Res; 1997 Jun; 115(2):217-33. PubMed ID: 9224851
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The oscillatory network of simple repetitive bimanual movements.
    Pollok B; Südmeyer M; Gross J; Schnitzler A
    Brain Res Cogn Brain Res; 2005 Sep; 25(1):300-11. PubMed ID: 16023333
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.