These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 22923337)

  • 1. Distinct attention networks for feature enhancement and suppression in vision.
    Bridwell DA; Srinivasan R
    Psychol Sci; 2012 Oct; 23(10):1151-8. PubMed ID: 22923337
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neuronal synchronization and selective color processing in the human brain.
    Müller MM; Keil A
    J Cogn Neurosci; 2004 Apr; 16(3):503-22. PubMed ID: 15072684
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Visual flicker in the gamma-band range does not draw attention.
    van Diepen RM; Born S; Souto D; Gauch A; Kerzel D
    J Neurophysiol; 2010 Mar; 103(3):1606-13. PubMed ID: 20089822
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Individual Alpha Peak Frequency Predicts 10 Hz Flicker Effects on Selective Attention.
    Gulbinaite R; van Viegen T; Wieling M; Cohen MX; VanRullen R
    J Neurosci; 2017 Oct; 37(42):10173-10184. PubMed ID: 28931569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of feature and spatial attention on visual change detection.
    Kimura M; Katayama J; Murohashi H
    Neuroreport; 2008 Feb; 19(3):389-92. PubMed ID: 18303587
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Causal involvement of visual area MT in global feature-based enhancement but not contingent attentional capture.
    Painter DR; Dux PE; Mattingley JB
    Neuroimage; 2015 Sep; 118():90-102. PubMed ID: 26067347
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Temporal attention enhances early visual processing: a review and new evidence from event-related potentials.
    Correa A; Lupiáñez J; Madrid E; Tudela P
    Brain Res; 2006 Mar; 1076(1):116-28. PubMed ID: 16516173
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Attentional load asymmetrically affects early electrophysiological indices of visual orienting.
    O'Connell RG; Schneider D; Hester R; Mattingley JB; Bellgrove MA
    Cereb Cortex; 2011 May; 21(5):1056-65. PubMed ID: 20843899
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Isolating event-related potential components associated with voluntary control of visuo-spatial attention.
    McDonald JJ; Green JJ
    Brain Res; 2008 Aug; 1227():96-109. PubMed ID: 18621037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using Partial Directed Coherence to Study Alpha-Band Effective Brain Networks during a Visuospatial Attention Task.
    Zhao Z; Wang C
    Behav Neurol; 2019; 2019():1410425. PubMed ID: 31565094
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neural basis of auditory-induced shifts in visual time-order perception.
    McDonald JJ; Teder-Sälejärvi WA; Di Russo F; Hillyard SA
    Nat Neurosci; 2005 Sep; 8(9):1197-202. PubMed ID: 16056224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of characteristics of target cues on task interference from prospective memory.
    Chen Y; Huang X; Jackson T; Yang H
    Neuroreport; 2009 Jan; 20(1):81-6. PubMed ID: 18978643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gamma flicker elicits positive affect without awareness.
    Heerebout BT; Tap AE; Rotteveel M; Phaf RH
    Conscious Cogn; 2013 Mar; 22(1):281-9. PubMed ID: 22884774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Selective attention modulates neural substrates of repetition priming and "implicit" visual memory: suppressions and enhancements revealed by FMRI.
    Vuilleumier P; Schwartz S; Duhoux S; Dolan RJ; Driver J
    J Cogn Neurosci; 2005 Aug; 17(8):1245-60. PubMed ID: 16197681
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prepare for conflict: EEG correlates of the anticipation of target competition during overt and covert shifts of visual attention.
    Kelly SP; Foxe JJ; Newman G; Edelman JA
    Eur J Neurosci; 2010 May; 31(9):1690-700. PubMed ID: 20525082
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voluntary orienting is dissociated from target detection in human posterior parietal cortex.
    Corbetta M; Kincade JM; Ollinger JM; McAvoy MP; Shulman GL
    Nat Neurosci; 2000 Mar; 3(3):292-7. PubMed ID: 10700263
    [TBL] [Abstract][Full Text] [Related]  

  • 17. From local inhibition to long-range integration: a functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention.
    Doesburg SM; Green JJ; McDonald JJ; Ward LM
    Brain Res; 2009 Dec; 1303():97-110. PubMed ID: 19782056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A bias for posterior alpha-band power suppression versus enhancement during shifting versus maintenance of spatial attention.
    Rihs TA; Michel CM; Thut G
    Neuroimage; 2009 Jan; 44(1):190-9. PubMed ID: 18793732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemispheric modulations of alpha-band power reflect the rightward shift in attention induced by enhanced attentional load.
    Pérez A; Peers PV; Valdés-Sosa M; Galán L; García L; Martínez-Montes E
    Neuropsychologia; 2009 Jan; 47(1):41-9. PubMed ID: 18789956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Differentiating spatial and object-based effects on attention: an event-related brain potential study with peripheral cueing.
    He X; Humphreys G; Fan S; Chen L; Han S
    Brain Res; 2008 Dec; 1245():116-25. PubMed ID: 18955038
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.