BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 22923411)

  • 21. Fucosidases from the human gut symbiont Ruminococcus gnavus.
    Wu H; Rebello O; Crost EH; Owen CD; Walpole S; Bennati-Granier C; Ndeh D; Monaco S; Hicks T; Colvile A; Urbanowicz PA; Walsh MA; Angulo J; Spencer DIR; Juge N
    Cell Mol Life Sci; 2021 Jan; 78(2):675-693. PubMed ID: 32333083
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of a high performance α-galactosidase from Irpex lacteus and its usage in removal of raffinose family oligosaccharides from soymilk.
    Jang JM; Yang Y; Wang R; Bao H; Yuan H; Yang J
    Int J Biol Macromol; 2019 Jun; 131():1138-1146. PubMed ID: 30981775
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prebiotic properties of Bacillus coagulans MA-13: production of galactoside hydrolyzing enzymes and characterization of the transglycosylation properties of a GH42 β-galactosidase.
    Aulitto M; Strazzulli A; Sansone F; Cozzolino F; Monti M; Moracci M; Fiorentino G; Limauro D; Bartolucci S; Contursi P
    Microb Cell Fact; 2021 Mar; 20(1):71. PubMed ID: 33736637
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis of Stachyobifiose Using Bifidobacterial α-Galactosidase Purified from Recombinant Escherichia coli.
    Oh SY; Youn SY; Park MS; Baek NI; Ji GE
    J Agric Food Chem; 2018 Feb; 66(5):1184-1190. PubMed ID: 29363955
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cloning and functional expression of alkaline alpha-galactosidase from melon fruit: similarity to plant SIP proteins uncovers a novel family of plant glycosyl hydrolases.
    Carmi N; Zhang G; Petreikov M; Gao Z; Eyal Y; Granot D; Schaffer AA
    Plant J; 2003 Jan; 33(1):97-106. PubMed ID: 12943544
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structural insight into the hydrolase and synthase activities of an alkaline α-galactosidase from Arabidopsis from complexes with substrate/product.
    Chuankhayan P; Lee RH; Guan HH; Lin CC; Chen NC; Huang YC; Yoshimura M; Nakagawa A; Chen CJ
    Acta Crystallogr D Struct Biol; 2023 Feb; 79(Pt 2):154-167. PubMed ID: 36762861
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new α-galactosidase from thermoacidophilic Alicyclobacillus sp. A4 with wide acceptor specificity for transglycosylation.
    Wang H; Ma R; Shi P; Xue X; Luo H; Huang H; Bai Y; Yang P; Yao B
    Appl Biochem Biotechnol; 2014 Sep; 174(1):328-38. PubMed ID: 25064132
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Debaryomyces hansenii UFV-1 intracellular alpha-galactosidase characterization and comparative studies with the extracellular enzyme.
    Viana PA; de Rezende ST; Passos FM; Oliveira JS; Teixeira KN; Santos AM; Bemquerer MP; Rosa JC; Santoro MM; Guimarães VM
    J Agric Food Chem; 2009 Mar; 57(6):2515-22. PubMed ID: 19226141
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning and expression of the gene encoding Streptomyces coelicolor A3(2) alpha-galactosidase belonging to family 36.
    Kondoh K; Morisaki K; Kim WD; Park GG; Kaneko S; Kobayashi H
    Biotechnol Lett; 2005 May; 27(9):641-7. PubMed ID: 15977071
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Purification and characterization of an α-galactosidase from Phaseolus coccineus seeds showing degrading capability on raffinose family oligosaccharides.
    Du F; Zhu M; Wang H; Ng T
    Plant Physiol Biochem; 2013 Aug; 69():49-53. PubMed ID: 23727589
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Purification an α-galactosidase from Coriolus versicolor with acid-resistant and good degradation ability on raffinose family oligosaccharides.
    Du F; Liu Q; Wang H; Ng T
    World J Microbiol Biotechnol; 2014 Apr; 30(4):1261-7. PubMed ID: 24197787
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Characterization of novel α-galactosidase in glycohydrolase family 97 from Bacteroides thetaiotaomicron and its immobilization for industrial application.
    Shin YJ; Woo SH; Jeong HM; Kim JS; Ko DS; Jeong DW; Lee JH; Shim JH
    Int J Biol Macromol; 2020 Jun; 152():727-734. PubMed ID: 32092418
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding.
    Fredslund F; Hachem MA; Larsen RJ; Sørensen PG; Coutinho PM; Lo Leggio L; Svensson B
    J Mol Biol; 2011 Sep; 412(3):466-80. PubMed ID: 21827767
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Synthesis of alpha-galactooligosaccharides with alpha-galactosidase from Lactobacillus reuteri of canine origin.
    Tzortzis G; Jay AJ; Baillon ML; Gibson GR; Rastall RA
    Appl Microbiol Biotechnol; 2003 Dec; 63(3):286-92. PubMed ID: 12955354
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nucleotide sequences and operon structure of plasmid-borne genes mediating uptake and utilization of raffinose in Escherichia coli.
    Aslanidis C; Schmid K; Schmitt R
    J Bacteriol; 1989 Dec; 171(12):6753-63. PubMed ID: 2556373
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimization of Saccharomyces cerevisiae α-galactosidase production and application in the degradation of raffinose family oligosaccharides.
    Álvarez-Cao ME; Cerdán ME; González-Siso MI; Becerra M
    Microb Cell Fact; 2019 Oct; 18(1):172. PubMed ID: 31601209
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Thermostable alpha-galactosidase from Bacillus stearothermophilus NUB3621: cloning, sequencing and characterization.
    Fridjonsson O; Watzlawick H; Gehweiler A; Mattes R
    FEMS Microbiol Lett; 1999 Jul; 176(1):147-53. PubMed ID: 10418141
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A novel protease-resistant alpha-galactosidase with high hydrolytic activity from Gibberella sp. F75: gene cloning, expression, and enzymatic characterization.
    Cao Y; Wang Y; Meng K; Bai Y; Shi P; Luo H; Yang P; Zhou Z; Zhang Z; Yao B
    Appl Microbiol Biotechnol; 2009 Jul; 83(5):875-84. PubMed ID: 19288093
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Degradation of stachyose, raffinose, melibiose and sucrose by different tempe-producing Rhizopus fungi.
    Rehms H; Barz W
    Appl Microbiol Biotechnol; 1995 Dec; 44(1-2):47-52. PubMed ID: 8579835
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Genes Involved in Galactooligosaccharide Metabolism in Lactobacillus reuteri and Their Ecological Role in the Gastrointestinal Tract.
    Rattanaprasert M; van Pijkeren JP; Ramer-Tait AE; Quintero M; Kok CR; Walter J; Hutkins RW
    Appl Environ Microbiol; 2019 Nov; 85(22):. PubMed ID: 31519661
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.