These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

168 related articles for article (PubMed ID: 22923423)

  • 21. Leg stiffness primarily depends on ankle stiffness during human hopping.
    Farley CT; Morgenroth DC
    J Biomech; 1999 Mar; 32(3):267-73. PubMed ID: 10093026
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A comparison of computation methods for leg stiffness during hopping.
    Hobara H; Inoue K; Kobayashi Y; Ogata T
    J Appl Biomech; 2014 Feb; 30(1):154-9. PubMed ID: 24676522
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Amputee locomotion: spring-like leg behavior and stiffness regulation using running-specific prostheses.
    Hobara H; Baum BS; Kwon HJ; Miller RH; Ogata T; Kim YH; Shim JK
    J Biomech; 2013 Sep; 46(14):2483-9. PubMed ID: 23953671
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Limits in reliability of leg-spring and joint stiffness measures during single-leg hopping within a sled-based system.
    Diggin D; Anderson R; Harrison AJ
    PLoS One; 2019; 14(12):e0225664. PubMed ID: 31805080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Effective leg stiffness in running.
    Blum Y; Lipfert SW; Seyfarth A
    J Biomech; 2009 Oct; 42(14):2400-5. PubMed ID: 19647825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Three-dimensional kinematic comparison of treadmill and overground running.
    Sinclair J; Richards J; Taylor PJ; Edmundson CJ; Brooks D; Hobbs SJ
    Sports Biomech; 2013 Sep; 12(3):272-82. PubMed ID: 24245052
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intrinsic ankle and hopping leg-spring stiffness in distance runners and aerobic gymnasts.
    Rabita G; Couturier A; Lambertz D
    Int J Sports Med; 2011 Jul; 32(7):552-8. PubMed ID: 21563039
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Changes in Vertical and Joint Stiffness in Runners With Advancing Age.
    Powell DW; Williams DSB
    J Strength Cond Res; 2018 Dec; 32(12):3416-3422. PubMed ID: 28240709
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Constant and variable stiffness and damping of the leg joints in human hopping.
    Rapoport S; Mizrahi J; Kimmel E; Verbitsky O; Isakov E
    J Biomech Eng; 2003 Aug; 125(4):507-14. PubMed ID: 12968575
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The interday reliability of leg and ankle musculotendinous stiffness measures.
    McLachlan KA; Murphy AJ; Watsford ML; Rees S
    J Appl Biomech; 2006 Nov; 22(4):296-304. PubMed ID: 17293626
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of hopping frequency on bilateral differences in leg stiffness.
    Hobara H; Inoue K; Kanosue K
    J Appl Biomech; 2013 Feb; 29(1):55-60. PubMed ID: 23462443
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Mechanism of leg stiffness adjustment for hopping on surfaces of different stiffnesses.
    Farley CT; Houdijk HH; Van Strien C; Louie M
    J Appl Physiol (1985); 1998 Sep; 85(3):1044-55. PubMed ID: 9729582
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Biomechanical response to ankle-foot orthosis stiffness during running.
    Russell Esposito E; Choi HS; Owens JG; Blanck RV; Wilken JM
    Clin Biomech (Bristol, Avon); 2015 Dec; 30(10):1125-32. PubMed ID: 26371854
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A Comparison of Vertical Stiffness Values Calculated from Different Measures of Center of Mass Displacement in Single-Leg Hopping.
    Mudie KL; Gupta A; Green S; Hobara H; Clothier PJ
    J Appl Biomech; 2017 Feb; 33(1):39-47. PubMed ID: 27705055
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of maximal speed sprinting performance with changes in vertical, leg and joint stiffness.
    Nagahara R; Zushi K
    J Sports Med Phys Fitness; 2017 Dec; 57(12):1572-1578. PubMed ID: 27406013
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Passive dynamics change leg mechanics for an unexpected surface during human hopping.
    Moritz CT; Farley CT
    J Appl Physiol (1985); 2004 Oct; 97(4):1313-22. PubMed ID: 15169748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Treadmill vs. overground running gait during childhood: a qualitative and quantitative analysis.
    Rozumalski A; Novacheck TF; Griffith CJ; Walt K; Schwartz MH
    Gait Posture; 2015 Feb; 41(2):613-8. PubMed ID: 25662042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Leg stiffness in human running: Comparison of estimates derived from previously published models to direct kinematic-kinetic measures.
    Coleman DR; Cannavan D; Horne S; Blazevich AJ
    J Biomech; 2012 Jul; 45(11):1987-91. PubMed ID: 22682258
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Reliabilities of leg and vertical stiffness during treadmill running.
    Pappas P; Paradisis G; Tsolakis C; Smirniotou A; Morin JB
    Sports Biomech; 2014 Nov; 13(4):391-9. PubMed ID: 25438771
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.