These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 22923577)

  • 21. Thermodynamic Destabilization of Ti-O Solid Solution by H2 and Deoxygenation of Ti Using Mg.
    Zhang Y; Fang ZZ; Sun P; Zhang T; Xia Y; Zhou C; Huang Z
    J Am Chem Soc; 2016 Jun; 138(22):6916-9. PubMed ID: 27196140
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of alloying elements (Mn, Co, Al, W, Sn, B, C and S) on biodegradability and in vitro biocompatibility of pure iron.
    Liu B; Zheng YF
    Acta Biomater; 2011 Mar; 7(3):1407-20. PubMed ID: 21056126
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New surface-hardened, low-modulus, corrosion-resistant Ti-13Nb-13Zr alloy for total hip arthroplasty.
    Davidson JA; Mishra AK; Kovacs P; Poggie RA
    Biomed Mater Eng; 1994; 4(3):231-43. PubMed ID: 7950871
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Skeletal Ru/Cu catalysts prepared from crystalline and quasicrystalline ternary alloy precursors: characterization by X-ray absorption spectroscopy and CO oxidation.
    Highfield J; Liu T; Loo YS; Grushko B; Borgna A
    Phys Chem Chem Phys; 2009 Feb; 11(8):1196-208. PubMed ID: 19209363
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of a bulk nanostructured metastable Al alloy with extreme supersaturation of Mg.
    Han JK; Liss KD; Langdon TG; Kawasaki M
    Sci Rep; 2019 Nov; 9(1):17186. PubMed ID: 31748547
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of hydrogen flux through sulfur-tolerant binary alloy membranes.
    Kamakoti P; Morreale BD; Ciocco MV; Howard BH; Killmeyer RP; Cugini AV; Sholl DS
    Science; 2005 Jan; 307(5709):569-73. PubMed ID: 15681382
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Orientation mapping of nanostructured materials using transmission Kikuchi diffraction in the scanning electron microscope.
    Trimby PW
    Ultramicroscopy; 2012 Sep; 120():16-24. PubMed ID: 22796555
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Thermomechanical effects of spine surgery rods composed of different metals and alloys.
    Noshchenko A; Patel VV; Baldini T; Yun L; Lindley EM; Burger EL
    Spine (Phila Pa 1976); 2011 May; 36(11):870-8. PubMed ID: 20739915
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unique mechanical properties of nanostructured metals.
    Tsuji N
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3765-70. PubMed ID: 18047054
    [TBL] [Abstract][Full Text] [Related]  

  • 30. High tensile ductility in a nanostructured metal.
    Wang Y; Chen M; Zhou F; Ma E
    Nature; 2002 Oct; 419(6910):912-5. PubMed ID: 12410306
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Higher Temperatures Yield Smaller Grains in a Thermally Stable Phase-Transforming Nanocrystalline Alloy.
    Amram D; Schuh CA
    Phys Rev Lett; 2018 Oct; 121(14):145503. PubMed ID: 30339419
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The influence of tungsten on the chemical composition of a temporally evolving nanostructure of a model Ni-Al-Cr superalloy.
    Sudbrack CK; Isheim D; Noebe RD; Jacobson NS; Seidman DN
    Microsc Microanal; 2004 Jun; 10(3):355-65. PubMed ID: 15233854
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Precipitation phase transformation in nanocrystalline Fe-Mo alloys.
    Sarkar S; Bansal C
    J Nanosci Nanotechnol; 2004; 4(1-2):203-8. PubMed ID: 15112568
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The response of bone to nanocrystalline hydroxyapatite-coated Ti13Nb11Zr alloy in an animal model.
    Bigi A; Fini M; Bracci B; Boanini E; Torricelli P; Giavaresi G; Aldini NN; Facchini A; Sbaiz F; Giardino R
    Biomaterials; 2008 Apr; 29(11):1730-6. PubMed ID: 18192001
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dislocation mechanism of deuterium retention in tungsten under plasma implantation.
    Dubinko VI; Grigorev P; Bakaev A; Terentyev D; van Oost G; Gao F; Van Neck D; Zhurkin EE
    J Phys Condens Matter; 2014 Oct; 26(39):395001. PubMed ID: 25138240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Basic principles for rational design of high-performance nanostructured silicon-based thermoelectric materials.
    Yang CC; Li S
    Chemphyschem; 2011 Dec; 12(18):3614-8. PubMed ID: 22015704
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The atomic level structure of the TiO(2)-NiTi interface.
    Nolan M; Tofail SA
    Phys Chem Chem Phys; 2010 Sep; 12(33):9742-50. PubMed ID: 20552125
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TiO2-WO3 composite nanotubes by alloy anodization: growth and enhanced electrochromic properties.
    Nah YC; Ghicov A; Kim D; Berger S; Schmuki P
    J Am Chem Soc; 2008 Dec; 130(48):16154-5. PubMed ID: 18998674
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical stability and corrosion resistance of Ti-Mo alloys for biomedical applications.
    Oliveira NT; Guastaldi AC
    Acta Biomater; 2009 Jan; 5(1):399-405. PubMed ID: 18707926
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The effect of Zr content on the microstructure, mechanical properties and cell attachment of Ti-35Nb-xZr alloys.
    Ning C; Ding D; Dai K; Zhai W; Chen L
    Biomed Mater; 2010 Aug; 5(4):045006. PubMed ID: 20603527
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.