BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 22923620)

  • 1. Autoregulation and mechanotransduction control the arteriolar response to small changes in hematocrit.
    Sriram K; Salazar Vázquez BY; Tsai AG; Cabrales P; Intaglietta M; Tartakovsky DM
    Am J Physiol Heart Circ Physiol; 2012 Nov; 303(9):H1096-106. PubMed ID: 22923620
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Theoretical analysis of vascular regulatory mechanisms contributing to retinal blood flow autoregulation.
    Arciero J; Harris A; Siesky B; Amireskandari A; Gershuny V; Pickrell A; Guidoboni G
    Invest Ophthalmol Vis Sci; 2013 Aug; 54(8):5584-93. PubMed ID: 23847315
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical model of blood flow autoregulation: roles of myogenic, shear-dependent, and metabolic responses.
    Carlson BE; Arciero JC; Secomb TW
    Am J Physiol Heart Circ Physiol; 2008 Oct; 295(4):H1572-9. PubMed ID: 18723769
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elevation of plasma viscosity induces sustained NO-mediated dilation in the hamster cremaster microcirculation in vivo.
    de Wit C; Schäfer C; von Bismarck P; Bolz SS; Pohl U
    Pflugers Arch; 1997 Aug; 434(4):354-61. PubMed ID: 9211800
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-Newtonian flow of blood in arterioles: consequences for wall shear stress measurements.
    Sriram K; Intaglietta M; Tartakovsky DM
    Microcirculation; 2014 Oct; 21(7):628-39. PubMed ID: 24703006
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of compliance and hematocrit on wall shear stress in a model of the entire coronary arterial tree.
    Huo Y; Kassab GS
    J Appl Physiol (1985); 2009 Aug; 107(2):500-5. PubMed ID: 19541733
    [TBL] [Abstract][Full Text] [Related]  

  • 7. PECAM-1 mediates NO-dependent dilation of arterioles to high temporal gradients of shear stress.
    Bagi Z; Frangos JA; Yeh JC; White CR; Kaley G; Koller A
    Arterioscler Thromb Vasc Biol; 2005 Aug; 25(8):1590-5. PubMed ID: 15890968
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of flow, vessel diameter, and non-newtonian blood viscosity on the wall shear stress in a carotid bifurcation model for unsteady flow.
    Box FM; van der Geest RJ; Rutten MC; Reiber JH
    Invest Radiol; 2005 May; 40(5):277-94. PubMed ID: 15829825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebrovascular response to decreased hematocrit: effect of cell-free hemoglobin, plasma viscosity, and CO2.
    Rebel A; Ulatowski JA; Kwansa H; Bucci E; Koehler RC
    Am J Physiol Heart Circ Physiol; 2003 Oct; 285(4):H1600-8. PubMed ID: 12816746
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Elevated plasma viscosity in extreme hemodilution increases perivascular nitric oxide concentration and microvascular perfusion.
    Tsai AG; Acero C; Nance PR; Cabrales P; Frangos JA; Buerk DG; Intaglietta M
    Am J Physiol Heart Circ Physiol; 2005 Apr; 288(4):H1730-9. PubMed ID: 15576432
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelium-derived nitric oxide enhances the effect of intraaortic balloon pumping on diastolic coronary flow.
    Toyota E; Goto M; Nakamoto H; Ebata J; Tachibana H; Hiramatsu O; Ogasawara Y; Kajiya F
    Ann Thorac Surg; 1999 May; 67(5):1254-61. PubMed ID: 10355392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paradoxical hypotension following increased hematocrit and blood viscosity.
    Martini J; Carpentier B; Negrete AC; Frangos JA; Intaglietta M
    Am J Physiol Heart Circ Physiol; 2005 Nov; 289(5):H2136-43. PubMed ID: 16006543
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of shear stress and endothelial prostaglandins in flow- and viscosity-induced dilation of arterioles in vitro.
    Koller A; Sun D; Kaley G
    Circ Res; 1993 Jun; 72(6):1276-84. PubMed ID: 8495555
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recovery of cell-free layer and wall shear stress profile symmetry downstream of an arteriolar bifurcation.
    Ye SS; Ju M; Kim S
    Microvasc Res; 2016 Jul; 106():14-23. PubMed ID: 26969106
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wall shear stress differentially affects NO level in arterioles for volume expanders and Hb-based O2 carriers.
    Kavdia M; Popel AS
    Microvasc Res; 2003 Jul; 66(1):49-58. PubMed ID: 12826074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arteriolar network response to pressure reduction during sympathetic nerve stimulation in cat skeletal muscle.
    Ping P; Johnson PC
    Am J Physiol; 1994 Mar; 266(3 Pt 2):H1251-9. PubMed ID: 8160830
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PEG-albumin supraplasma expansion is due to increased vessel wall shear stress induced by blood viscosity shear thinning.
    Sriram K; Tsai AG; Cabrales P; Meng F; Acharya SA; Tartakovsky DM; Intaglietta M
    Am J Physiol Heart Circ Physiol; 2012 Jun; 302(12):H2489-97. PubMed ID: 22505638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The effect of small changes in hematocrit on nitric oxide transport in arterioles.
    Sriram K; Vázquez BY; Yalcin O; Johnson PC; Intaglietta M; Tartakovsky DM
    Antioxid Redox Signal; 2011 Jan; 14(2):175-85. PubMed ID: 20560785
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of cell-free layer formation on NO/O2 bioavailability in small arterioles.
    Ong PK; Cho S; Namgung B; Kim S
    Microvasc Res; 2012 Mar; 83(2):168-77. PubMed ID: 22155421
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Temporal and spatial variations of cell-free layer width in arterioles.
    Kim S; Kong RL; Popel AS; Intaglietta M; Johnson PC
    Am J Physiol Heart Circ Physiol; 2007 Sep; 293(3):H1526-35. PubMed ID: 17526647
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.