These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 22923693)

  • 21. Force field development phase II: Relaxation of physics-based criteria… or inclusion of more rigorous physics into the representation of molecular energetics.
    Hagler AT
    J Comput Aided Mol Des; 2019 Feb; 33(2):205-264. PubMed ID: 30506159
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Importance of van der Waals Interactions in QM/MM Simulations.
    Riccardi D; Li G; Cui Q
    J Phys Chem B; 2004 May; 108(20):6467-78. PubMed ID: 18950136
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of Diffusion Monte Carlo to Materials Dominated by van der Waals Interactions.
    Benali A; Shulenburger L; Romero NA; Kim J; von Lilienfeld OA
    J Chem Theory Comput; 2014 Aug; 10(8):3417-22. PubMed ID: 26588310
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting Molecular Crystal Properties from First Principles: Finite-Temperature Thermochemistry to NMR Crystallography.
    Beran GJ; Hartman JD; Heit YN
    Acc Chem Res; 2016 Nov; 49(11):2501-2508. PubMed ID: 27754668
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Toward a First-Principles Framework for Predicting Collective Properties of Electrolytes.
    Duignan TT; Kathmann SM; Schenter GK; Mundy CJ
    Acc Chem Res; 2021 Jul; 54(13):2833-2843. PubMed ID: 34137593
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Direct Observation of CH/CH van der Waals Interactions in Proteins by NMR.
    Li J; Wang Y; An L; Chen J; Yao L
    J Am Chem Soc; 2018 Mar; 140(9):3194-3197. PubMed ID: 29480712
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Colossal Enhancement of Atomic Force Response in van der Waals Materials Arising from Many-Body Electronic Correlations.
    Hauseux P; Ambrosetti A; Bordas SPA; Tkatchenko A
    Phys Rev Lett; 2022 Mar; 128(10):106101. PubMed ID: 35333088
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Intercalators. 1. Nature of stacking interactions between intercalators (ethidium, daunomycin, ellipticine, and 4',6-diaminide-2-phenylindole) and DNA base pairs. Ab initio quantum chemical, density functional theory, and empirical potential study.
    Reha D; Kabelác M; Ryjácek F; Sponer J; Sponer JE; Elstner M; Suhai S; Hobza P
    J Am Chem Soc; 2002 Apr; 124(13):3366-76. PubMed ID: 11916422
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A density-functional theory-based neural network potential for water clusters including van der Waals corrections.
    Morawietz T; Behler J
    J Phys Chem A; 2013 Aug; 117(32):7356-66. PubMed ID: 23557541
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nuclear quantum effects in a HIV/cancer inhibitor: The case of ellipticine.
    Sappati S; Hassanali A; Gebauer R; Ghosh P
    J Chem Phys; 2016 Nov; 145(20):205102. PubMed ID: 27908111
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Energy, water, and protein folding: A molecular dynamics-based quantitative inventory of molecular interactions and forces that make proteins stable.
    Galano-Frutos JJ; Sancho J
    Protein Sci; 2024 Feb; 33(2):e4905. PubMed ID: 38284492
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Coulomb interactions between dipolar quantum fluctuations in van der Waals bound molecules and materials.
    Stöhr M; Sadhukhan M; Al-Hamdani YS; Hermann J; Tkatchenko A
    Nat Commun; 2021 Jan; 12(1):137. PubMed ID: 33420079
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the importance of van der Waals interaction in the groove binding of DNA with ligands: restrained molecular dynamics study.
    Chang DK; Cheng SF
    Int J Biol Macromol; 1996 Dec; 19(4):279-85. PubMed ID: 9024904
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Computing van der Waals energies in the context of the rotamer approximation.
    Grigoryan G; Ochoa A; Keating AE
    Proteins; 2007 Sep; 68(4):863-78. PubMed ID: 17554777
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Hydrogen bonds and van der waals forces in ice at ambient and high pressures.
    Santra B; Klimeš J; Alfè D; Tkatchenko A; Slater B; Michaelides A; Car R; Scheffler M
    Phys Rev Lett; 2011 Oct; 107(18):185701. PubMed ID: 22107644
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Theoretical studies of the intercalation of 9-hydroxyellipticine in DNA.
    Elcock AH; Rodger A; Richards WG
    Biopolymers; 1996 Sep; 39(3):309-26. PubMed ID: 8756512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD.
    Vovchenko V; Gorenstein MI; Stoecker H
    Phys Rev Lett; 2017 May; 118(18):182301. PubMed ID: 28524693
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An application of the van der Waals density functional: Hydrogen bonding and stacking interactions between nucleobases.
    Cooper VR; Thonhauser T; Langreth DC
    J Chem Phys; 2008 May; 128(20):204102. PubMed ID: 18513005
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and stability of weakly chemisorbed ethene adsorbed on low-index Cu surfaces: performance of density functionals with van der Waals interactions.
    Hanke F; Dyer MS; Björk J; Persson M
    J Phys Condens Matter; 2012 Oct; 24(42):424217. PubMed ID: 23031831
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.