BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

288 related articles for article (PubMed ID: 22923784)

  • 1. Translation of a tumor microenvironment mimicking 3D tumor growth co-culture assay platform to high-content screening.
    Krausz E; de Hoogt R; Gustin E; Cornelissen F; Grand-Perret T; Janssen L; Vloemans N; Wuyts D; Frans S; Axel A; Peeters PJ; Hall B; Cik M
    J Biomol Screen; 2013 Jan; 18(1):54-66. PubMed ID: 22923784
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An HTS-compatible 3D colony formation assay to identify tumor-specific chemotherapeutics.
    Horman SR; To J; Orth AP
    J Biomol Screen; 2013 Dec; 18(10):1298-308. PubMed ID: 23918920
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A method for measurement of drug sensitivity of myeloma cells co-cultured with bone marrow stromal cells.
    Misund K; Baranowska KA; Holien T; Rampa C; Klein DC; Børset M; Waage A; Sundan A
    J Biomol Screen; 2013 Jul; 18(6):637-46. PubMed ID: 23446700
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using high throughput microtissue culture to study the difference in prostate cancer cell behavior and drug response in 2D and 3D co-cultures.
    Mosaad E; Chambers K; Futrega K; Clements J; Doran MR
    BMC Cancer; 2018 May; 18(1):592. PubMed ID: 29793440
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High content screening of defined chemical libraries using normal and glioma-derived neural stem cell lines.
    Danovi D; Folarin AA; Baranowski B; Pollard SM
    Methods Enzymol; 2012; 506():311-29. PubMed ID: 22341231
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment.
    Yoshii Y; Furukawa T; Waki A; Okuyama H; Inoue M; Itoh M; Zhang MR; Wakizaka H; Sogawa C; Kiyono Y; Yoshii H; Fujibayashi Y; Saga T
    Biomaterials; 2015 May; 51():278-289. PubMed ID: 25771018
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Towards automated production and drug sensitivity testing using scaffold-free spherical tumor microtissues.
    Drewitz M; Helbling M; Fried N; Bieri M; Moritz W; Lichtenberg J; Kelm JM
    Biotechnol J; 2011 Dec; 6(12):1488-96. PubMed ID: 22102438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fluorescence-based experimental model to evaluate the concomitant effect of drugs on the tumour microenvironment and cancer cells.
    Ramasamy K; Khatun H; Macpherson L; Caley MP; Sturge J; Mufti GJ; Schey SA; Calle Y
    Br J Haematol; 2012 Jun; 157(5):564-79. PubMed ID: 22428569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Drug screening in 3D in vitro tumor models: overcoming current pitfalls of efficacy read-outs.
    Santo VE; Rebelo SP; Estrada MF; Alves PM; Boghaert E; Brito C
    Biotechnol J; 2017 Jan; 12(1):. PubMed ID: 27966285
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-content assays for characterizing the viability and morphology of 3D cancer spheroid cultures.
    Sirenko O; Mitlo T; Hesley J; Luke S; Owens W; Cromwell EF
    Assay Drug Dev Technol; 2015 Sep; 13(7):402-14. PubMed ID: 26317884
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development of a high-content screening assay panel to accelerate mechanism of action studies for oncology research.
    Towne DL; Nicholl EE; Comess KM; Galasinski SC; Hajduk PJ; Abraham VC
    J Biomol Screen; 2012 Sep; 17(8):1005-17. PubMed ID: 22706350
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microbioreactors for high-throughput cytotoxicity assays.
    Yang ST; Zhang X; Wen Y
    Curr Opin Drug Discov Devel; 2008 Jan; 11(1):111-27. PubMed ID: 18175274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Image-based high-throughput screening for inhibitors of angiogenesis.
    Evensen L; Link W; Lorens JB
    Methods Mol Biol; 2013; 931():139-51. PubMed ID: 23027002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-throughput imaging: Focusing in on drug discovery in 3D.
    Li L; Zhou Q; Voss TC; Quick KL; LaBarbera DV
    Methods; 2016 Mar; 96():97-102. PubMed ID: 26608110
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A novel imaging-based high-throughput screening approach to anti-angiogenic drug discovery.
    Evensen L; Micklem DR; Link W; Lorens JB
    Cytometry A; 2010 Jan; 77(1):41-51. PubMed ID: 19834964
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pathophysiologically relevant in vitro tumor models for drug screening.
    Das V; Bruzzese F; Konečný P; Iannelli F; Budillon A; Hajdúch M
    Drug Discov Today; 2015 Jul; 20(7):848-55. PubMed ID: 25908576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Establishment and Analysis of a 3D Co-Culture Spheroid Model of Pancreatic Adenocarcinoma for Application in Drug Discovery.
    Meier-Hubberten JC; Sanderson MP
    Methods Mol Biol; 2019; 1953():163-179. PubMed ID: 30912022
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A polymer microstructure array for the formation, culturing, and high throughput drug screening of breast cancer spheroids.
    Markovitz-Bishitz Y; Tauber Y; Afrimzon E; Zurgil N; Sobolev M; Shafran Y; Deutsch A; Howitz S; Deutsch M
    Biomaterials; 2010 Nov; 31(32):8436-44. PubMed ID: 20692698
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Development of fluorescence imaging based assay for screening compounds with anti-migration activity].
    Nie XJ; Zhao XP; Wang Y
    Yao Xue Xue Bao; 2011 Jul; 46(7):793-7. PubMed ID: 22010348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative Phenotypic Image Analysis of Three-Dimensional Organotypic Cultures.
    Åkerfelt M; Toriseva M; Nees M
    Methods Mol Biol; 2017; 1612():433-445. PubMed ID: 28634961
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.