These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
296 related articles for article (PubMed ID: 22923989)
41. 3D porous collagen/functionalized multiwalled carbon nanotube/chitosan/hydroxyapatite composite scaffolds for bone tissue engineering. Türk S; Altınsoy I; Çelebi Efe G; Ipek M; Özacar M; Bindal C Mater Sci Eng C Mater Biol Appl; 2018 Nov; 92():757-768. PubMed ID: 30184804 [TBL] [Abstract][Full Text] [Related]
42. Silk scaffolds in bone tissue engineering: An overview. Bhattacharjee P; Kundu B; Naskar D; Kim HW; Maiti TK; Bhattacharya D; Kundu SC Acta Biomater; 2017 Nov; 63():1-17. PubMed ID: 28941652 [TBL] [Abstract][Full Text] [Related]
43. Engineered cellular microenvironments from functionalized multiwalled carbon nanotubes integrating Zein/Chitosan @Polyurethane for bone cell regeneration. Shrestha S; Shrestha BK; Ko SW; Kandel R; Park CH; Kim CS Carbohydr Polym; 2021 Jan; 251():117035. PubMed ID: 33142593 [TBL] [Abstract][Full Text] [Related]
44. Carbon nanotube-incorporated multilayered cellulose acetate nanofibers for tissue engineering applications. Luo Y; Wang S; Shen M; Qi R; Fang Y; Guo R; Cai H; Cao X; Tomás H; Zhu M; Shi X Carbohydr Polym; 2013 Jan; 91(1):419-27. PubMed ID: 23044152 [TBL] [Abstract][Full Text] [Related]
45. Carbon nanotube-based biomaterials for orthopaedic applications. Aoki K; Ogihara N; Tanaka M; Haniu H; Saito N J Mater Chem B; 2020 Oct; 8(40):9227-9238. PubMed ID: 32935730 [TBL] [Abstract][Full Text] [Related]
46. Multiscale photoacoustic microscopy of single-walled carbon nanotube-incorporated tissue engineering scaffolds. Cai X; Paratala BS; Hu S; Sitharaman B; Wang LV Tissue Eng Part C Methods; 2012 Apr; 18(4):310-7. PubMed ID: 22082018 [TBL] [Abstract][Full Text] [Related]
47. Three-dimensional macroporous graphene scaffolds for tissue engineering. Lalwani G; D'agati M; Gopalan A; Rao M; Schneller J; Sitharaman B J Biomed Mater Res A; 2017 Jan; 105(1):73-83. PubMed ID: 27529473 [TBL] [Abstract][Full Text] [Related]
48. Bone Tissue Engineering via Carbon-Based Nanomaterials. Peng Z; Zhao T; Zhou Y; Li S; Li J; Leblanc RM Adv Healthc Mater; 2020 Mar; 9(5):e1901495. PubMed ID: 31976623 [TBL] [Abstract][Full Text] [Related]
49. Graphene nanomaterials as biocompatible and conductive scaffolds for stem cells: impact for tissue engineering and regenerative medicine. Menaa F; Abdelghani A; Menaa B J Tissue Eng Regen Med; 2015 Dec; 9(12):1321-38. PubMed ID: 24917559 [TBL] [Abstract][Full Text] [Related]
50. Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Di Martino A; Sittinger M; Risbud MV Biomaterials; 2005 Oct; 26(30):5983-90. PubMed ID: 15894370 [TBL] [Abstract][Full Text] [Related]
51. A new composite hydrogel combining the biological properties of collagen with the mechanical properties of a supramolecular scaffold for bone tissue engineering. Maisani M; Ziane S; Ehret C; Levesque L; Siadous R; Le Meins JF; Chevallier P; Barthélémy P; De Oliveira H; Amédée J; Mantovani D; Chassande O J Tissue Eng Regen Med; 2018 Mar; 12(3):e1489-e1500. PubMed ID: 28875562 [TBL] [Abstract][Full Text] [Related]
52. Biomimetic bone tissue engineering hydrogel scaffolds constructed using ordered CNTs and HA induce the proliferation and differentiation of BMSCs. Liu L; Yang B; Wang LQ; Huang JP; Chen WY; Ban Q; Zhang Y; You R; Yin L; Guan YQ J Mater Chem B; 2020 Jan; 8(3):558-567. PubMed ID: 31854433 [TBL] [Abstract][Full Text] [Related]
53. Nanomaterial scaffolds for stem cell proliferation and differentiation in tissue engineering. Zhao C; Tan A; Pastorin G; Ho HK Biotechnol Adv; 2013; 31(5):654-68. PubMed ID: 22902273 [TBL] [Abstract][Full Text] [Related]
54. Fabrication and characterization of novel ethyl cellulose-grafted-poly (ɛ-caprolactone)/alginate nanofibrous/macroporous scaffolds incorporated with nano-hydroxyapatite for bone tissue engineering. Hokmabad VR; Davaran S; Aghazadeh M; Rahbarghazi R; Salehi R; Ramazani A J Biomater Appl; 2019 Mar; 33(8):1128-1144. PubMed ID: 30651055 [TBL] [Abstract][Full Text] [Related]
55. Fabrication and characterization of drug-loaded nano-hydroxyapatite/polyamide 66 scaffolds modified with carbon nanotubes and silk fibroin. Yao MZ; Huang-Fu MY; Liu HN; Wang XR; Sheng X; Gao JQ Int J Nanomedicine; 2016; 11():6181-6194. PubMed ID: 27920525 [TBL] [Abstract][Full Text] [Related]
56. Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells. Lu W; Ji K; Kirkham J; Yan Y; Boccaccini AR; Kellett M; Jin Y; Yang XB Cell Tissue Res; 2014 Apr; 356(1):97-107. PubMed ID: 24408074 [TBL] [Abstract][Full Text] [Related]
57. Development of 3D PCL microsphere/TiO Khoshroo K; Jafarzadeh Kashi TS; Moztarzadeh F; Tahriri M; Jazayeri HE; Tayebi L Mater Sci Eng C Mater Biol Appl; 2017 Jan; 70(Pt 1):586-598. PubMed ID: 27770931 [TBL] [Abstract][Full Text] [Related]
58. Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. Ahmadi P; Nazeri N; Derakhshan MA; Ghanbari H Int J Biol Macromol; 2021 Jun; 180():590-598. PubMed ID: 33711373 [TBL] [Abstract][Full Text] [Related]
59. Three-Dimensional Conductive Scaffolds as Neural Prostheses Based on Carbon Nanotubes and Polypyrrole. Alegret N; Dominguez-Alfaro A; González-Domínguez JM; Arnaiz B; Cossío U; Bosi S; Vázquez E; Ramos-Cabrer P; Mecerreyes D; Prato M ACS Appl Mater Interfaces; 2018 Dec; 10(50):43904-43914. PubMed ID: 30475577 [TBL] [Abstract][Full Text] [Related]
60. Carbon nanotube applications for tissue engineering. Harrison BS; Atala A Biomaterials; 2007 Jan; 28(2):344-53. PubMed ID: 16934866 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]