These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 22924453)

  • 1. Three-dimensional nanofabrication of polystyrene by focused ion beam.
    Lee CC; Proust G; Alici G; Spinks GM; Cairney JM
    J Microsc; 2012 Nov; 248(2):129-39. PubMed ID: 22924453
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Minimization of focused ion beam damage in nanostructured polymer thin films.
    Kim S; Jeong Park M; Balsara NP; Liu G; Minor AM
    Ultramicroscopy; 2011 Feb; 111(3):191-9. PubMed ID: 21333856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Focused-ion-beam-inflicted surface amorphization and gallium implantation--new insights and removal by focused-electron-beam-induced etching.
    Roediger P; Wanzenboeck HD; Waid S; Hochleitner G; Bertagnolli E
    Nanotechnology; 2011 Jun; 22(23):235302. PubMed ID: 21474869
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Damage in III-V compounds during focused ion beam milling.
    Rubanov S; Munroe PR
    Microsc Microanal; 2005 Oct; 11(5):446-55. PubMed ID: 17481325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Rapid Focused Ion Beam Milling Based Fabrication of Plasmonic Nanoparticles and Assemblies via "Sketch and Peel" Strategy.
    Chen Y; Bi K; Wang Q; Zheng M; Liu Q; Han Y; Yang J; Chang S; Zhang G; Duan H
    ACS Nano; 2016 Dec; 10(12):11228-11236. PubMed ID: 28024375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FIB-induced damage in silicon.
    Rubanov S; Munroe PR
    J Microsc; 2004 Jun; 214(Pt 3):213-21. PubMed ID: 15157189
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Selective etching of focused gallium ion beam implanted regions from silicon as a nanofabrication method.
    Han Z; Vehkamäki M; Mattinen M; Salmi E; Mizohata K; Leskelä M; Ritala M
    Nanotechnology; 2015 Jul; 26(26):265304. PubMed ID: 26062985
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating focused ion beam induced damage in soft materials.
    Bailey RJ; Geurts R; Stokes DJ; de Jong F; Barber AH
    Micron; 2013 Jul; 50():51-6. PubMed ID: 23726471
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Loss of grain boundary segregant during ion milling.
    Kenik EA
    J Electron Microsc Tech; 1991 Jun; 18(2):167-71. PubMed ID: 1885999
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Customizable in situ TEM devices fabricated in freestanding membranes by focused ion beam milling.
    Lei A; Petersen DH; Booth TJ; Homann LV; Kallesoe C; Sukas OS; Gyrsting Y; Molhave K; Boggild P
    Nanotechnology; 2010 Oct; 21(40):405304. PubMed ID: 20829573
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strategies for gallium removal after focused ion beam patterning of ferroelectric oxide nanostructures.
    Schilling A; Adams T; Bowman RM; Gregg JM
    Nanotechnology; 2007 Jan; 18(3):035301. PubMed ID: 19636116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of gallium focused ion beam milling on preparation of aluminium thin foils.
    Unocic KA; Mills MJ; Daehn GS
    J Microsc; 2010 Dec; 240(3):227-38. PubMed ID: 21077883
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maskless milling of diamond by a focused oxygen ion beam.
    Martin AA; Randolph S; Botman A; Toth M; Aharonovich I
    Sci Rep; 2015 Mar; 5():8958. PubMed ID: 25753406
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of using stencil masks made by focused ion beam milling on permalloy (Ni81Fe19) nanostructures.
    Bates JR; Miyahara Y; Burgess JA; Iglesias-Freire O; Grütter P
    Nanotechnology; 2013 Mar; 24(11):115301. PubMed ID: 23449320
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fabrication of a TEM sample of ion-irradiated material using focused ion beam microprocessing and low-energy Ar ion milling.
    Jin HH; Shin C; Kwon J
    J Electron Microsc (Tokyo); 2010; 59(6):463-8. PubMed ID: 20484144
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ultrathin specimen preparation by a low-energy Ar-ion milling method.
    Mitome M
    Microscopy (Oxf); 2013 Apr; 62(2):321-6. PubMed ID: 23155112
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The application of FIB milling for specimen preparation from crystalline germanium.
    Rubanov S; Munroe PR
    Micron; 2004; 35(7):549-56. PubMed ID: 15219901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The correlation between ion beam/material interactions and practical FIB specimen preparation.
    Prenitzer BI; Urbanik-Shannon CA; Giannuzzi LA; Brown SR; Irwin RB; Shofner TL; Stevie FA
    Microsc Microanal; 2003 Jun; 9(3):216-36. PubMed ID: 12807673
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of the preparation of GaN-based specimens with low-energy ion milling for (S)TEM.
    Mehrtens T; Bley S; Venkata Satyam P; Rosenauer A
    Micron; 2012 Aug; 43(8):902-9. PubMed ID: 22475986
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Combining focused ion beam and atomic layer deposition in nanostructure fabrication.
    Han Z; Vehkamäki M; Leskelä M; Ritala M
    Nanotechnology; 2014 Mar; 25(11):115302. PubMed ID: 24556713
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.