These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 22924594)
1. Construction of heterometallic clusters in a small peptide scaffold as [NiFe]-hydrogenase models: development of a synthetic methodology. Dutta A; Hamilton GA; Hartnett HE; Jones AK Inorg Chem; 2012 Sep; 51(18):9580-8. PubMed ID: 22924594 [TBL] [Abstract][Full Text] [Related]
2. Dithiolato-bridged dinuclear iron-nickel complexes [Fe(CO)2(CN)2(mu-SCH2CH2CH2S)Ni(S2CNR2)]- modeling the active site of [NiFe] hydrogenase. Li Z; Ohki Y; Tatsumi K J Am Chem Soc; 2005 Jun; 127(25):8950-1. PubMed ID: 15969562 [TBL] [Abstract][Full Text] [Related]
4. The crystal structure of the [NiFe] hydrogenase from the photosynthetic bacterium Allochromatium vinosum: characterization of the oxidized enzyme (Ni-A state). Ogata H; Kellers P; Lubitz W J Mol Biol; 2010 Sep; 402(2):428-44. PubMed ID: 20673834 [TBL] [Abstract][Full Text] [Related]
5. Synthetic hydrogenases: incorporation of an iron carbonyl thiolate into a designed peptide. Jones AK; Lichtenstein BR; Dutta A; Gordon G; Dutton PL J Am Chem Soc; 2007 Dec; 129(48):14844-5. PubMed ID: 17997557 [TBL] [Abstract][Full Text] [Related]
6. Force-field development and molecular dynamics simulations of ferrocene-peptide conjugates as a scaffold for hydrogenase mimics. de Hatten X; Cournia Z; Huc I; Smith JC; Metzler-Nolte N Chemistry; 2007; 13(29):8139-52. PubMed ID: 17763506 [TBL] [Abstract][Full Text] [Related]
7. [NiFe] and [FeS] cofactors in the membrane-bound hydrogenase of Ralstonia eutropha investigated by X-ray absorption spectroscopy: insights into O(2)-tolerant H(2) cleavage. Fritsch J; Löscher S; Sanganas O; Siebert E; Zebger I; Stein M; Ludwig M; De Lacey AL; Dau H; Friedrich B; Lenz O; Haumann M Biochemistry; 2011 Jul; 50(26):5858-69. PubMed ID: 21618994 [TBL] [Abstract][Full Text] [Related]
9. A structural and functional mimic of the active site of NiFe hydrogenases. Canaguier S; Field M; Oudart Y; Pécaut J; Fontecave M; Artero V Chem Commun (Camb); 2010 Aug; 46(32):5876-8. PubMed ID: 20625582 [TBL] [Abstract][Full Text] [Related]
10. [NiFe] hydrogenases: structural and spectroscopic studies of the reaction mechanism. Ogata H; Lubitz W; Higuchi Y Dalton Trans; 2009 Oct; (37):7577-87. PubMed ID: 19759926 [TBL] [Abstract][Full Text] [Related]
11. Investigating the role of the outer-coordination sphere in [Ni(P(Ph)2N(Ph‑R)2)2]2+ hydrogenase mimics. Jain A; Reback ML; Lindstrom ML; Thogerson CE; Helm ML; Appel AM; Shaw WJ Inorg Chem; 2012 Jun; 51(12):6592-602. PubMed ID: 22662880 [TBL] [Abstract][Full Text] [Related]
12. Hydrogenases and H(+)-reduction in primary energy conservation. Vignais PM Results Probl Cell Differ; 2008; 45():223-52. PubMed ID: 18500479 [TBL] [Abstract][Full Text] [Related]
13. Incorporating peptides in the outer-coordination sphere of bioinspired electrocatalysts for hydrogen production. Jain A; Lense S; Linehan JC; Raugei S; Cho H; DuBois DL; Shaw WJ Inorg Chem; 2011 May; 50(9):4073-85. PubMed ID: 21456543 [TBL] [Abstract][Full Text] [Related]
14. Preparative and structural studies on iron(II)-thiolate cyanocarbonyls: relevance to the [NiFe]/[Fe]-hydrogenases. Chen CH; Chang YS; Yang CY; Chen TN; Lee CM; Liaw WF Dalton Trans; 2004 Jan; (1):137-43. PubMed ID: 15356752 [TBL] [Abstract][Full Text] [Related]
15. Model of the iron hydrogenase active site covalently linked to a ruthenium photosensitizer: synthesis and photophysical properties. Ott S; Borgström M; Kritikos M; Lomoth R; Bergquist J; Akermark B; Hammarström L; Sun L Inorg Chem; 2004 Jul; 43(15):4683-92. PubMed ID: 15257597 [TBL] [Abstract][Full Text] [Related]
16. Synthetic and structural studies on L-cysteinyl group-containing diiron/triiron azadithiolates as active site models of [FeFe]-hydrogenases. Song LC; Yan J; Li YL; Wang DF; Hu QM Inorg Chem; 2009 Dec; 48(23):11376-81. PubMed ID: 19860376 [TBL] [Abstract][Full Text] [Related]
17. Relativistic DFT calculation of the reaction cycle intermediates of [NiFe] hydrogenase: a contribution to understanding the enzymatic mechanism. Stein M; Lubitz W J Inorg Biochem; 2004 May; 98(5):862-77. PubMed ID: 15134933 [TBL] [Abstract][Full Text] [Related]
18. Direct comparison of the performance of a bio-inspired synthetic nickel catalyst and a [NiFe]-hydrogenase, both covalently attached to electrodes. Rodriguez-Maciá P; Dutta A; Lubitz W; Shaw WJ; Rüdiger O Angew Chem Int Ed Engl; 2015 Oct; 54(42):12303-7. PubMed ID: 26140506 [TBL] [Abstract][Full Text] [Related]
19. Spectroelectrochemical study of the [NiFe] hydrogenase from Desulfovibrio vulgaris Miyazaki F in solution and immobilized on biocompatible gold surfaces. Millo D; Pandelia ME; Utesch T; Wisitruangsakul N; Mroginski MA; Lubitz W; Hildebrandt P; Zebger I J Phys Chem B; 2009 Nov; 113(46):15344-51. PubMed ID: 19845323 [TBL] [Abstract][Full Text] [Related]
20. Facile synthesis and functionality-dependent electrochemistry of Fe-only hydrogenase mimics. Si G; Wang WG; Wang HY; Tung CH; Wu LZ Inorg Chem; 2008 Sep; 47(18):8101-11. PubMed ID: 18710214 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]