These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 22924642)

  • 21. Human mesenchymal stromal cells are mechanosensitive to vibration stimuli.
    Kim IS; Song YM; Lee B; Hwang SJ
    J Dent Res; 2012 Dec; 91(12):1135-40. PubMed ID: 23086742
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Matrix-mediated retention of osteogenic differentiation potential by human adult bone marrow stromal cells during ex vivo expansion.
    Mauney JR; Kaplan DL; Volloch V
    Biomaterials; 2004 Jul; 25(16):3233-43. PubMed ID: 14980418
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The epitope characterisation and the osteogenic differentiation potential of human fat pad-derived stem cells is maintained with ageing in later life.
    Khan WS; Adesida AB; Tew SR; Andrew JG; Hardingham TE
    Injury; 2009 Feb; 40(2):150-7. PubMed ID: 19070850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Proliferation and osteogenesis of immortalized bone marrow-derived mesenchymal stem cells in porous polylactic glycolic acid scaffolds under perfusion culture.
    Yang J; Cao C; Wang W; Tong X; Shi D; Wu F; Zheng Q; Guo C; Pan Z; Gao C; Wang J
    J Biomed Mater Res A; 2010 Mar; 92(3):817-29. PubMed ID: 19280635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Superior osteogenic capacity of human embryonic stem cells adapted to matrix-free growth compared to human mesenchymal stem cells.
    Bigdeli N; de Peppo GM; Lennerås M; Sjövall P; Lindahl A; Hyllner J; Karlsson C
    Tissue Eng Part A; 2010 Nov; 16(11):3427-40. PubMed ID: 20653416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative study of the osteogenic differentiation capacity of human bone marrow- and human adipose-derived stem cells under cyclic tensile stretch using quantitative analysis.
    Ye Y; Du Y; Guo F; Gong C; Yang K; Qin L
    Int J Mol Med; 2012 Dec; 30(6):1327-34. PubMed ID: 22961098
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The incorporation of 70s bioactive glass to the osteogenic differentiation of murine embryonic stem cells in 3D bioreactors.
    Zhang J; Wang M; Cha JM; Mantalaris A
    J Tissue Eng Regen Med; 2009 Jan; 3(1):63-71. PubMed ID: 19053163
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Human stem cell-based three-dimensional microtissues for advanced cardiac cell therapies.
    Emmert MY; Wolint P; Wickboldt N; Gemayel G; Weber B; Brokopp CE; Boni A; Falk V; Bosman A; Jaconi ME; Hoerstrup SP
    Biomaterials; 2013 Sep; 34(27):6339-54. PubMed ID: 23727259
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A xenogeneic-free bioreactor system for the clinical-scale expansion of human mesenchymal stem/stromal cells.
    Dos Santos F; Campbell A; Fernandes-Platzgummer A; Andrade PZ; Gimble JM; Wen Y; Boucher S; Vemuri MC; da Silva CL; Cabral JM
    Biotechnol Bioeng; 2014 Jun; 111(6):1116-27. PubMed ID: 24420557
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A double-chamber rotating bioreactor for the development of tissue-engineered hollow organs: from concept to clinical trial.
    Asnaghi MA; Jungebluth P; Raimondi MT; Dickinson SC; Rees LE; Go T; Cogan TA; Dodson A; Parnigotto PP; Hollander AP; Birchall MA; Conconi MT; Macchiarini P; Mantero S
    Biomaterials; 2009 Oct; 30(29):5260-9. PubMed ID: 19647867
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Large-scale expansion of pluripotent human embryonic stem cells in stirred-suspension bioreactors.
    Krawetz R; Taiani JT; Liu S; Meng G; Li X; Kallos MS; Rancourt DE
    Tissue Eng Part C Methods; 2010 Aug; 16(4):573-82. PubMed ID: 19737071
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Free-form-fabricated commercially pure Ti and Ti6Al4V porous scaffolds support the growth of human embryonic stem cell-derived mesodermal progenitors.
    de Peppo GM; Palmquist A; Borchardt P; Lennerås M; Hyllner J; Snis A; Lausmaa J; Thomsen P; Karlsson C
    ScientificWorldJournal; 2012; 2012():646417. PubMed ID: 22262956
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Engineering vascularized bone graft with osteogenic and angiogenic lineage differentiated bone marrow mesenchymal stem cells.
    Zhang R; Gao Z; Geng W; Yan X; Chen F; Liu Y
    Artif Organs; 2012 Dec; 36(12):1036-46. PubMed ID: 23020776
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The collagen component of biological bone graft substitutes promotes ectopic bone formation by human mesenchymal stem cells.
    Wagner-Ecker M; Voltz P; Egermann M; Richter W
    Acta Biomater; 2013 Jul; 9(7):7298-307. PubMed ID: 23542556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Design and Assessment of a Dynamic Perfusion Bioreactor for Large Bone Tissue Engineering Scaffolds.
    Bhaskar B; Owen R; Bahmaee H; Rao PS; Reilly GC
    Appl Biochem Biotechnol; 2018 Jun; 185(2):555-563. PubMed ID: 29235057
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Ex vivo expansion of hematopoietic stem cells derived from umbilical cord blood in rotating wall vessel.
    Liu Y; Liu T; Fan X; Ma X; Cui Z
    J Biotechnol; 2006 Jul; 124(3):592-601. PubMed ID: 16513201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of dynamic 3-D culture on proliferation, distribution, and osteogenic differentiation of human mesenchymal stem cells.
    Stiehler M; Bünger C; Baatrup A; Lind M; Kassem M; Mygind T
    J Biomed Mater Res A; 2009 Apr; 89(1):96-107. PubMed ID: 18431785
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cell interactions between human progenitor-derived endothelial cells and human mesenchymal stem cells in a three-dimensional macroporous polysaccharide-based scaffold promote osteogenesis.
    Guerrero J; Catros S; Derkaoui SM; Lalande C; Siadous R; Bareille R; Thébaud N; Bordenave L; Chassande O; Le Visage C; Letourneur D; Amédée J
    Acta Biomater; 2013 Sep; 9(9):8200-13. PubMed ID: 23743130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mechanical stimulation promotes osteogenic differentiation of human bone marrow stromal cells on 3-D partially demineralized bone scaffolds in vitro.
    Mauney JR; Sjostorm S; Blumberg J; Horan R; O'Leary JP; Vunjak-Novakovic G; Volloch V; Kaplan DL
    Calcif Tissue Int; 2004 May; 74(5):458-68. PubMed ID: 14961210
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Overexpression of GDF5 through an adenovirus vector stimulates osteogenesis of human mesenchymal stem cells in vitro and in vivo.
    Cheng X; Yang T; Meng W; Liu H; Zhang T; Shi R
    Cells Tissues Organs; 2012; 196(1):56-67. PubMed ID: 22287558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.