BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

457 related articles for article (PubMed ID: 22924795)

  • 1. Each life stage matters: the importance of assessing the response to climate change over the complete life cycle in butterflies.
    Radchuk V; Turlure C; Schtickzelle N
    J Anim Ecol; 2013 Jan; 82(1):275-85. PubMed ID: 22924795
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting responses to climate change requires all life-history stages.
    Zeigler S
    J Anim Ecol; 2013 Jan; 82(1):3-5. PubMed ID: 23330960
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unravelling the annual cycle in a migratory animal: breeding-season habitat loss drives population declines of monarch butterflies.
    Flockhart DT; Pichancourt JB; Norris DR; Martin TG
    J Anim Ecol; 2015 Jan; 84(1):155-65. PubMed ID: 24903085
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring the universal ecological responses to climate change in a univoltine butterfly.
    Fenberg PB; Self A; Stewart JR; Wilson RJ; Brooks SJ
    J Anim Ecol; 2016 May; 85(3):739-48. PubMed ID: 26876243
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensitivity of UK butterflies to local climatic extremes: which life stages are most at risk?
    McDermott Long O; Warren R; Price J; Brereton TM; Botham MS; Franco AM
    J Anim Ecol; 2017 Jan; 86(1):108-116. PubMed ID: 27796048
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Disentangling environmental effects on adult life span in a butterfly across the metamorphic boundary.
    Bauerfeind SS; Perlick JE; Fischer K
    Exp Gerontol; 2009 Dec; 44(12):805-11. PubMed ID: 19836442
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determinants of extinction-colonization dynamics in Mediterranean butterflies: the role of landscape, climate and local habitat features.
    Fernández-Chacón A; Stefanescu C; Genovart M; Nichols JD; Hines JE; Páramo F; Turco M; Oro D
    J Anim Ecol; 2014 Jan; 83(1):276-85. PubMed ID: 23957287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperature drives abundance fluctuations, but spatial dynamics is constrained by landscape configuration: Implications for climate-driven range shift in a butterfly.
    Fourcade Y; Ranius T; Öckinger E
    J Anim Ecol; 2017 Oct; 86(6):1339-1351. PubMed ID: 28796909
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insect overwintering in a changing climate.
    Bale JS; Hayward SA
    J Exp Biol; 2010 Mar; 213(6):980-94. PubMed ID: 20190123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chapter 2. Vulnerability of marine turtles to climate change.
    Poloczanska ES; Limpus CJ; Hays GC
    Adv Mar Biol; 2009; 56():151-211. PubMed ID: 19895975
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gimme shelter--the relative sensitivity of parasitic nematodes with direct and indirect life cycles to climate change.
    Molnár PK; Dobson AP; Kutz SJ
    Glob Chang Biol; 2013 Nov; 19(11):3291-305. PubMed ID: 23801641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of larval host plants in the climate-driven range expansion of the butterfly Polygonia c-album.
    Braschler B; Hill JK
    J Anim Ecol; 2007 May; 76(3):415-23. PubMed ID: 17439459
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining population-dynamic and ecophysiological models to predict climate-induced insect range shifts.
    Crozier L; Dwyer G
    Am Nat; 2006 Jun; 167(6):853-66. PubMed ID: 16685639
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insect seasonality: circle map analysis of temperature-driven life cycles.
    Powell JA; Logan JA
    Theor Popul Biol; 2005 May; 67(3):161-79. PubMed ID: 15808334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contrasted demographic responses facing future climate change in Southern Ocean seabirds.
    Barbraud C; Rivalan P; Inchausti P; Nevoux M; Rolland V; Weimerskirch H
    J Anim Ecol; 2011 Jan; 80(1):89-100. PubMed ID: 20840607
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Flowering time of butterfly nectar food plants is more sensitive to temperature than the timing of butterfly adult flight.
    Kharouba HM; Vellend M
    J Anim Ecol; 2015 Sep; 84(5):1311-21. PubMed ID: 25823582
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combined effects of climate and biotic interactions on the elevational range of a phytophagous insect.
    Merrill RM; Gutiérrez D; Lewis OT; Gutiérrez J; Díez SB; Wilson RJ
    J Anim Ecol; 2008 Jan; 77(1):145-55. PubMed ID: 18177334
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Current temporal trends in moth abundance are counter to predicted effects of climate change in an assemblage of subarctic forest moths.
    Hunter MD; Kozlov MV; Itämies J; Pulliainen E; Bäck J; Kyrö EM; Niemelä P
    Glob Chang Biol; 2014 Jun; 20(6):1723-37. PubMed ID: 24421221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chapter 4. Susceptibility of sharks, rays and chimaeras to global extinction.
    Field IC; Meekan MG; Buckworth RC; Bradshaw CJ
    Adv Mar Biol; 2009; 56():275-363. PubMed ID: 19895977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of urban expansion and a changing climate to decline of a butterfly fauna.
    Casner KL; Forister ML; O'Brien JM; Thorne J; Waetjen D; Shapiro AM
    Conserv Biol; 2014 Jun; 28(3):773-82. PubMed ID: 24527888
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.