BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 22925422)

  • 1. Evidence for iron-mediated anaerobic methane oxidation in a crude oil-contaminated aquifer.
    Amos RT; Bekins BA; Cozzarelli IM; Voytek MA; Kirshtein JD; Jones EJ; Blowes DW
    Geobiology; 2012 Nov; 10(6):506-17. PubMed ID: 22925422
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Methane oxidation in a crude oil contaminated aquifer: Delineation of aerobic reactions at the plume fringes.
    Amos RT; Bekins BA; Delin GN; Cozzarelli IM; Blowes DW; Kirshtein JD
    J Contam Hydrol; 2011 Jul; 125(1-4):13-25. PubMed ID: 21612840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recharge processes drive sulfate reduction in an alluvial aquifer contaminated with landfill leachate.
    Scholl MA; Cozzarelli IM; Christenson SC
    J Contam Hydrol; 2006 Aug; 86(3-4):239-61. PubMed ID: 16677736
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mass balance approach to investigate arsenic cycling in a petroleum plume.
    Ziegler BA; Schreiber ME; Cozzarelli IM; Crystal Ng GH
    Environ Pollut; 2017 Dec; 231(Pt 2):1351-1361. PubMed ID: 28943347
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A strategy for aromatic hydrocarbon bioremediation under anaerobic conditions and the impacts of ethanol: a microcosm study.
    Chen YD; Barker JF; Gui L
    J Contam Hydrol; 2008 Feb; 96(1-4):17-31. PubMed ID: 17964687
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Occurrence and rates of terminal electron-accepting processes and recharge processes in petroleum hydrocarbon-contaminated subsurface.
    Salminen JM; Hänninen PJ; Leveinen J; Lintinen PT; Jørgensen KS
    J Environ Qual; 2006; 35(6):2273-82. PubMed ID: 17071898
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of alluvial aquifer sediments in attenuating a dissolved arsenic plume.
    Ziegler BA; Schreiber ME; Cozzarelli IM
    J Contam Hydrol; 2017 Sep; 204():90-101. PubMed ID: 28797670
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigating the role of gas bubble formation and entrapment in contaminated aquifers: Reactive transport modelling.
    Amos RT; Ulrich Mayer K
    J Contam Hydrol; 2006 Sep; 87(1-2):123-54. PubMed ID: 16797104
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vadose zone attenuation of organic compounds at a crude oil spill site - interactions between biogeochemical reactions and multicomponent gas transport.
    Molins S; Mayer KU; Amos RT; Bekins BA
    J Contam Hydrol; 2010 Mar; 112(1-4):15-29. PubMed ID: 19853961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Biogeochemical processes at the fringe of a landfill leachate pollution plume: potential for dissolved organic carbon, Fe(II), Mn(II), NH4, and CH4 oxidation.
    van Breukelen BM; Griffioen J
    J Contam Hydrol; 2004 Sep; 73(1-4):181-205. PubMed ID: 15336794
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A simple method for calculating growth rates of petroleum hydrocarbon plumes.
    Bekins BA; Cozzarelli IM; Curtis GP
    Ground Water; 2005; 43(6):817-26. PubMed ID: 16324003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The methane cycle in ferruginous Lake Matano.
    Crowe SA; Katsev S; Leslie K; Sturm A; Magen C; Nomosatryo S; Pack MA; Kessler JD; Reeburgh WS; Roberts JA; González L; Douglas Haffner G; Mucci A; Sundby B; Fowle DA
    Geobiology; 2011 Jan; 9(1):61-78. PubMed ID: 20854329
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relating subsurface temperature changes to microbial activity at a crude oil-contaminated site.
    Warren E; Bekins BA
    J Contam Hydrol; 2015 Nov; 182():183-93. PubMed ID: 26409188
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arsenic Cycling in Hydrocarbon Plumes: Secondary Effects of Natural Attenuation.
    Cozzarelli IM; Schreiber ME; Erickson ML; Ziegler BA
    Ground Water; 2016 Jan; 54(1):35-45. PubMed ID: 25612004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mass balance approach to investigating geochemical controls on secondary water quality impacts at a crude oil spill site near Bemidji, MN.
    Ng GH; Bekins BA; Cozzarelli IM; Baedecker MJ; Bennett PC; Amos RT
    J Contam Hydrol; 2014 Aug; 164():1-15. PubMed ID: 24908586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biogeochemistry at a wetland sediment-alluvial aquifer interface in a landfill leachate plume.
    Lorah MM; Cozzarelli IM; Böhlke JK
    J Contam Hydrol; 2009 Apr; 105(3-4):99-117. PubMed ID: 19136178
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Characterization of the relationship between microbial degradation processes at a hydrocarbon contaminated site using isotopic methods.
    Feisthauer S; Seidel M; Bombach P; Traube S; Knöller K; Wange M; Fachmann S; Richnow HH
    J Contam Hydrol; 2012 May; 133():17-29. PubMed ID: 22484391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanisms of electron acceptor utilization: implications for simulating anaerobic biodegradation.
    Schreiber ME; Carey GR; Feinstein DT; Bahr JM
    J Contam Hydrol; 2004 Sep; 73(1-4):99-127. PubMed ID: 15336791
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assimilation of methane and inorganic carbon by microbial communities mediating the anaerobic oxidation of methane.
    Wegener G; Niemann H; Elvert M; Hinrichs KU; Boetius A
    Environ Microbiol; 2008 Sep; 10(9):2287-98. PubMed ID: 18498367
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Microbial methane production in deep aquifer associated with the accretionary prism in Japan.
    Kimura H; Nashimoto H; Shimizu M; Hattori S; Yamada K; Koba K; Yoshida N; Kato K
    ISME J; 2010 Apr; 4(4):531-41. PubMed ID: 19956275
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.