These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

75 related articles for article (PubMed ID: 22925768)

  • 1. NMR assignment of structural motifs in intact β-limit dextrin and its α-amylase degradation products in situ.
    Petersen BO; Meier S; Duus JØ
    Carbohydr Res; 2012 Oct; 359():76-80. PubMed ID: 22925768
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Polymer masked-unmasked protein therapy. 1. Bioresponsive dextrin-trypsin and -melanocyte stimulating hormone conjugates designed for alpha-amylase activation.
    Duncan R; Gilbert HR; Carbajo RJ; Vicent MJ
    Biomacromolecules; 2008 Apr; 9(4):1146-54. PubMed ID: 18348531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemical structures in pyrodextrin determined by nuclear magnetic resonance spectroscopy.
    Bai Y; Shi YC
    Carbohydr Polym; 2016 Oct; 151():426-433. PubMed ID: 27474585
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monitoring pathways of β-glucan degradation by enzyme mixtures in situ.
    Petersen BO; Olsen O; Beeren SR; Hindsgaul O; Meier S
    Carbohydr Res; 2013 Mar; 368():47-51. PubMed ID: 23333948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Number of branch points in α-limit dextrins impact glucose generation rates by mammalian mucosal α-glucosidases.
    Lee BH; Hamaker BR
    Carbohydr Polym; 2017 Feb; 157():207-213. PubMed ID: 27987919
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of reaction condition on glycosidic linkage structure, physical-chemical properties and in vitro digestibility of pyrodextrins prepared from native waxy maize starch.
    Chen J; Xiao J; Wang Z; Cheng H; Zhang Y; Lin B; Qin L; Bai Y
    Food Chem; 2020 Aug; 320():126491. PubMed ID: 32208185
    [TBL] [Abstract][Full Text] [Related]  

  • 7. NMR characterization of chemically synthesized branched α-dextrin model compounds.
    Petersen BO; Motawie MS; Møller BL; Hindsgaul O; Meier S
    Carbohydr Res; 2015 Feb; 403():149-56. PubMed ID: 24957577
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Safety evaluation of highly-branched cyclic dextrin and a 1,4-alpha-glucan branching enzyme from Bacillus stearothermophilus.
    Choi SS; Danielewska-Nikiel B; Ohdan K; Kojima I; Takata H; Kuriki T
    Regul Toxicol Pharmacol; 2009 Dec; 55(3):281-90. PubMed ID: 19651182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structures of multi-branched dextrins produced by saccharifyiing alpha-amylase from starch.
    Umeki K; Yamamoto T
    J Biochem; 1975 Nov; 78(5):897-903. PubMed ID: 814118
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dextrins as potential carriers for drug targeting: tailored rates of dextrin degradation by introduction of pendant groups.
    Hreczuk-Hirst D; Chicco D; German L; Duncan R
    Int J Pharm; 2001 Nov; 230(1-2):57-66. PubMed ID: 11672956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dextrin-rhEGF conjugates as bioresponsive nanomedicines for wound repair.
    Hardwicke J; Ferguson EL; Moseley R; Stephens P; Thomas DW; Duncan R
    J Control Release; 2008 Sep; 130(3):275-83. PubMed ID: 18700156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Probing helical hydrophobic binding sites in branched starch polysaccharides using NMR spectroscopy.
    Beeren SR; Meier S; Hindsgaul O
    Chemistry; 2013 Nov; 19(48):16314-20. PubMed ID: 24123516
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Starch biosynthesis: sucrose as a substrate for the synthesis of a highly branched component found in 12 varieties of starches.
    Mukerjea R; Robyt JF
    Carbohydr Res; 2003 Sep; 338(18):1811-22. PubMed ID: 12932364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioresponsive dextrin-rhEGF conjugates: in vitro evaluation in models relevant to its proposed use as a treatment for chronic wounds.
    Hardwicke J; Moseley R; Stephens P; Harding K; Duncan R; Thomas DW
    Mol Pharm; 2010 Jun; 7(3):699-707. PubMed ID: 20166755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The structure of the AliC GH13 α-amylase from Alicyclobacillus sp. reveals the accommodation of starch branching points in the α-amylase family.
    Agirre J; Moroz O; Meier S; Brask J; Munch A; Hoff T; Andersen C; Wilson KS; Davies GJ
    Acta Crystallogr D Struct Biol; 2019 Jan; 75(Pt 1):1-7. PubMed ID: 30644839
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Indigestible dextrin is an excellent inducer for α-amylase, α-glucosidase and glucoamylase production in a submerged culture of Aspergillus oryzae.
    Sugimoto T; Shoji H
    Biotechnol Lett; 2012 Feb; 34(2):347-51. PubMed ID: 22009575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structures of singly branched heptaoses produced by bacterial liquefying alpha-amylase.
    Umeki K; Yamamoto T
    J Biochem; 1975 Nov; 78(5):889-96. PubMed ID: 1240101
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substituent distribution in highly branched dextrins from methylated starches.
    van der Burgt YE; Bergsma J; Bleeker IP; Mijland PJ; Kamerling JP; Vliegenthart JF
    Carbohydr Res; 2000 Aug; 327(4):423-9. PubMed ID: 10990027
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of the starch components amylopectin and amylose by barley α-amylase 1: role of surface binding site 2.
    Nielsen JW; Kramhøft B; Bozonnet S; Abou Hachem M; Stipp SL; Svensson B; Willemoës M
    Arch Biochem Biophys; 2012 Dec; 528(1):1-6. PubMed ID: 22902860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The action pattern of human salivary alpha-amylase in the vicinity of the branch points of amylopectin.
    Abdullah M; Whelan WJ; Catley BJ
    Carbohydr Res; 1977 Aug; 57():281-9. PubMed ID: 302742
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.