These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 22925878)

  • 1. Removal of volatile organic compounds by heterogeneous ozonation on microporous synthetic alumina silicate.
    Brodu N; Zaitan H; Manero MH; Pic JS
    Water Sci Technol; 2012; 66(9):2020-6. PubMed ID: 22925878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of high silica zeolite ZSM-5 in a hybrid treatment process based on sequential adsorption and ozonation for VOCs elimination.
    Zaitan H; Manero MH; Valdés H
    J Environ Sci (China); 2016 Mar; 41():59-68. PubMed ID: 26969051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. H2O2-based oxidation processes for the regeneration of activated carbons saturated with volatile organic compounds of different polarity.
    Anfruns A; Montes-Morán MA; Gonzalez-Olmos R; Martin MJ
    Chemosphere; 2013 Mar; 91(1):48-54. PubMed ID: 23273734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic ozonation of 2,4-dichlorophenoxyacetic acid using alumina in the presence of a radical scavenger.
    Guzman-Perez CA; Soltan J; Robertson J
    J Environ Sci Health B; 2012; 47(6):544-52. PubMed ID: 22494378
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced bio-recalcitrant organics removal by combined adsorption and ozonation.
    Merle T; Pic JS; Manero MH; Debellefontaine H
    Water Sci Technol; 2009; 60(11):2921-8. PubMed ID: 19934514
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic ozonation of an organophosphorus pesticide using microporous silicate and its effect on total toxicity reduction.
    Kim BS; Fujita H; Sakai Y; Sakoda A; Suzuki M
    Water Sci Technol; 2002; 46(4-5):35-41. PubMed ID: 12361032
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Efficient mineralization of dimethyl phthalate by catalytic ozonation using TiO2/Al2O3 catalyst.
    Chen YH; Hsieh DC; Shang NC
    J Hazard Mater; 2011 Sep; 192(3):1017-25. PubMed ID: 21724322
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mesoporous silicate MCM-48 as an enrichment medium for ambient volatile organic compound analysis.
    Su YC; Kao HM; Wang JL
    J Chromatogr A; 2010 Sep; 1217(36):5643-51. PubMed ID: 20674927
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorption behaviors of volatile organic compounds (VOCs) on porous clay heterostructures (PCH).
    Qu F; Zhu L; Yang K
    J Hazard Mater; 2009 Oct; 170(1):7-12. PubMed ID: 19505753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of hydrophobic hypercrosslinked polymer as an adsorbent for removal of chlorinated volatile organic compounds.
    Long C; Liu P; Li Y; Li A; Zhang Q
    Environ Sci Technol; 2011 May; 45(10):4506-12. PubMed ID: 21488665
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron type catalysts for the ozonation of oxalic acid in water.
    Beltrán FJ; Rivas FJ; Montero-de-Espinosa R
    Water Res; 2005 Sep; 39(15):3553-64. PubMed ID: 16095660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adsorption of volatile organic compounds by metal-organic frameworks MIL-101: influence of molecular size and shape.
    Yang K; Sun Q; Xue F; Lin D
    J Hazard Mater; 2011 Nov; 195():124-31. PubMed ID: 21871718
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Effect of preozonation on the adsorption behaviors of NOM on alumina].
    Guo J; Ma J
    Huan Jing Ke Xue; 2007 Mar; 28(3):556-62. PubMed ID: 17633633
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Removal of benzene and methyl ethyl ketone vapor: comparison of hypercrosslinked polymeric adsorbent with activated carbon.
    Long C; Li Y; Yu W; Li A
    J Hazard Mater; 2012 Feb; 203-204():251-6. PubMed ID: 22204838
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Different families of volatile organic compounds pollution control by microporous carbons in temperature swing adsorption processes.
    Ramalingam SG; Pré P; Giraudet S; Le Coq L; Le Cloirec P; Baudouin O; Déchelotte S
    J Hazard Mater; 2012 Jun; 221-222():242-7. PubMed ID: 22551633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Acetaldehyde removal using an atmospheric non-thermal plasma combined with a packed bed: role of the adsorption process.
    Klett C; Duten X; Tieng S; Touchard S; Jestin P; Hassouni K; Vega-González A
    J Hazard Mater; 2014 Aug; 279():356-64. PubMed ID: 25072139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Decolorization of industrial wastewater by ozonation followed by adsorption on activated carbon.
    Konsowa AH; Ossman ME; Chen Y; Crittenden JC
    J Hazard Mater; 2010 Apr; 176(1-3):181-5. PubMed ID: 19959289
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Low-temperature catalytic oxidation of aldehyde mixtures using wood fly ash: kinetics, mechanism, and effect of ozone.
    Kolar P; Kastner JR
    Chemosphere; 2010 Feb; 78(9):1110-5. PubMed ID: 20064651
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement effect of carbon adsorbent on ozonation of aqueous phenol.
    Chaichanawong J; Yamamoto T; Ohmori T
    J Hazard Mater; 2010 Mar; 175(1-3):673-9. PubMed ID: 19926218
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect and mechanism of microwave-activated ultraviolet-advanced oxidation technology for adsorbent regeneration.
    Sun Y; Zheng T; Zhang G; Zheng Y; Wang P
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):290-298. PubMed ID: 29034423
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.