These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 2292600)

  • 1. An anatomy-based coordinate system for the description of the kinematic displacements in the human knee.
    Pennock GR; Clark KJ
    J Biomech; 1990; 23(12):1209-18. PubMed ID: 2292600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Establishment of a knee-joint coordinate system from helical axes analysis--a kinematic approach without anatomical referencing.
    Mannel H; Marin F; Claes L; Dürselen L
    IEEE Trans Biomed Eng; 2004 Aug; 51(8):1341-7. PubMed ID: 15311818
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinate system requirements to determine motions of the tibiofemoral joint free from kinematic crosstalk errors.
    Hull ML
    J Biomech; 2020 Aug; 109():109928. PubMed ID: 32807309
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of variability in anatomical landmark location on knee kinematic description.
    Morton NA; Maletsky LP; Pal S; Laz PJ
    J Orthop Res; 2007 Sep; 25(9):1221-30. PubMed ID: 17506082
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anterior cruciate ligament rupture translates the axes of motion within the knee.
    Mannel H; Marin F; Claes L; Dürselen L
    Clin Biomech (Bristol, Avon); 2004 Feb; 19(2):130-5. PubMed ID: 14967575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Virtual axis finder: a new method to determine the two kinematic axes of rotation for the tibio-femoral joint.
    Roland M; Hull ML; Howell SM
    J Biomech Eng; 2010 Jan; 132(1):011009. PubMed ID: 20524747
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vitro measurement of the tracking pattern of the human patella.
    Ahmed AM; Duncan NA; Tanzer M
    J Biomech Eng; 1999 Apr; 121(2):222-8. PubMed ID: 10211457
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A common reference frame for describing rotation of the distal femur: a ct-based kinematic study using cadavers.
    Victor J; Van Doninck D; Labey L; Van Glabbeek F; Parizel P; Bellemans J
    J Bone Joint Surg Br; 2009 May; 91(5):683-90. PubMed ID: 19407308
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Total knee arthroplasty using anatomic alignment can produce mid-flexion laxity.
    Incavo SJ; Schmid S; Sreenivas K; Ismaily S; Noble PC
    Clin Biomech (Bristol, Avon); 2013 Apr; 28(4):429-35. PubMed ID: 23528629
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Knee alignment in the transverse plane during weight-bearing activity and its implication for the tibial rotational alignment in total knee arthroplasty.
    Yin L; Chen K; Guo L; Cheng L; Wang F; Yang L
    Clin Biomech (Bristol, Avon); 2015 Jul; 30(6):565-71. PubMed ID: 25936578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in the rotational axes of the tibiofemoral joint caused by resection of the anterior cruciate ligament.
    Bonny DP; Howell SM; Hull ML
    J Orthop Res; 2017 Apr; 35(4):886-893. PubMed ID: 27219459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Helical axes of passive knee joint motions.
    Blankevoort L; Huiskes R; de Lange A
    J Biomech; 1990; 23(12):1219-29. PubMed ID: 2292601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distal Femoral Rotation Correlates With Proximal Tibial Joint Line Obliquity: A Consideration for Kinematic Total Knee Arthroplasty.
    Ng CK; Chen JY; Yeh JZY; Ho JPY; Merican AM; Yeo SJ
    J Arthroplasty; 2018 Jun; 33(6):1936-1944. PubMed ID: 29395720
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of three local frame definitions for the kinematic analysis of the fingers and the wrist.
    Goislard de Monsabert B; Visser JM; Vigouroux L; Van der Helm FC; Veeger HE
    J Biomech; 2014 Aug; 47(11):2590-7. PubMed ID: 24998990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accuracy of a contour-based biplane fluoroscopy technique for tracking knee joint kinematics of different speeds.
    Giphart JE; Zirker CA; Myers CA; Pennington WW; LaPrade RF
    J Biomech; 2012 Nov; 45(16):2935-8. PubMed ID: 23021610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Quantitative evaluation of the major determinants of human gait.
    Lin YC; Gfoehler M; Pandy MG
    J Biomech; 2014 Apr; 47(6):1324-31. PubMed ID: 24582352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A joint coordinate system for the clinical description of three-dimensional motions: application to the knee.
    Grood ES; Suntay WJ
    J Biomech Eng; 1983 May; 105(2):136-44. PubMed ID: 6865355
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The transepicondylar axis approximates the optimal flexion axis of the knee.
    Churchill DL; Incavo SJ; Johnson CC; Beynnon BD
    Clin Orthop Relat Res; 1998 Nov; (356):111-8. PubMed ID: 9917674
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A correction for axis misalignment in the joint angle curves representing knee movement in gait analysis.
    Rivest LP
    J Biomech; 2005 Aug; 38(8):1604-11. PubMed ID: 15958217
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Spatial kinematics of the femoro-tibial articulation of the human knee: experimental characterization and surgical implication].
    Landjerit B; Bisserie M
    Acta Orthop Belg; 1992; 58(2):147-58. PubMed ID: 1632214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.