These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
48. Looking at enzymes from the inside out: the proximity of catalytic residues to the molecular centroid can be used for detection of active sites and enzyme-ligand interfaces. Ben-Shimon A; Eisenstein M J Mol Biol; 2005 Aug; 351(2):309-26. PubMed ID: 16019028 [TBL] [Abstract][Full Text] [Related]
49. Predicting protein distance maps according to physicochemical properties. Cortés GA; Aguilar-Ruiz JS J Integr Bioinform; 2011 Sep; 8(3):181. PubMed ID: 21926444 [TBL] [Abstract][Full Text] [Related]
50. ECS: an automatic enzyme classifier based on functional domain composition. Lu L; Qian Z; Cai YD; Li Y Comput Biol Chem; 2007 Jun; 31(3):226-32. PubMed ID: 17500036 [TBL] [Abstract][Full Text] [Related]
51. The Catalytic Site Atlas: a resource of catalytic sites and residues identified in enzymes using structural data. Porter CT; Bartlett GJ; Thornton JM Nucleic Acids Res; 2004 Jan; 32(Database issue):D129-33. PubMed ID: 14681376 [TBL] [Abstract][Full Text] [Related]
52. Prediction of protein structural classes by Chou's pseudo amino acid composition: approached using continuous wavelet transform and principal component analysis. Li ZC; Zhou XB; Dai Z; Zou XY Amino Acids; 2009 Jul; 37(2):415-25. PubMed ID: 18726140 [TBL] [Abstract][Full Text] [Related]
53. Periodic distributions of hydrophobic amino acids allows the definition of fundamental building blocks to align distantly related proteins. Baussand J; Deremble C; Carbone A Proteins; 2007 May; 67(3):695-708. PubMed ID: 17299747 [TBL] [Abstract][Full Text] [Related]
55. Prediction of active sites of enzymes by maximum relevance minimum redundancy (mRMR) feature selection. Gao YF; Li BQ; Cai YD; Feng KY; Li ZD; Jiang Y Mol Biosyst; 2013 Jan; 9(1):61-9. PubMed ID: 23117653 [TBL] [Abstract][Full Text] [Related]
56. CMASA: an accurate algorithm for detecting local protein structural similarity and its application to enzyme catalytic site annotation. Li GH; Huang JF BMC Bioinformatics; 2010 Aug; 11():439. PubMed ID: 20796320 [TBL] [Abstract][Full Text] [Related]
57. Support vector machine prediction of enzyme function with conjoint triad feature and hierarchical context. Wang YC; Wang Y; Yang ZX; Deng NY BMC Syst Biol; 2011 Jun; 5 Suppl 1(Suppl 1):S6. PubMed ID: 21689481 [TBL] [Abstract][Full Text] [Related]
58. DomSign: a top-down annotation pipeline to enlarge enzyme space in the protein universe. Wang T; Mori H; Zhang C; Kurokawa K; Xing XH; Yamada T BMC Bioinformatics; 2015 Mar; 16():96. PubMed ID: 25888481 [TBL] [Abstract][Full Text] [Related]
59. ECOH: an enzyme commission number predictor using mutual information and a support vector machine. Matsuta Y; Ito M; Tohsato Y Bioinformatics; 2013 Feb; 29(3):365-72. PubMed ID: 23220570 [TBL] [Abstract][Full Text] [Related]
60. Analysis of catalytic residues in enzyme active sites. Bartlett GJ; Porter CT; Borkakoti N; Thornton JM J Mol Biol; 2002 Nov; 324(1):105-21. PubMed ID: 12421562 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]